Câu hỏi

Gọi \(S\) là tập chứa tất cả các giá trị nguyên của \(m\) sao cho hàm số \(y = {x^4} - 2\left( {m - 1} \right){x^2} + {m^2} - m\)  có ba điểm cực trị lập thành một tam giác vuông. Tổng tất cả các phần tử của tập \(S\) bằng

  • A 2.
  • B 1
  • C -5.
  • D 3.

Phương pháp giải:

- Tìm điều kiện để hàm số có 3 điểm cực trị.

- Xác định các điểm cực trị của hàm số.

- Tam giác \(ABC\) vuông tại \(A \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0\).

Lời giải chi tiết:

Ta có: \(y' = 4{x^3} - 4\left( {m - 1} \right)x = 4x\left[ {{x^2} - \left( {m - 1} \right)} \right].\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m - 1\end{array} \right.\)

Để hàm số có 3 điểm cực trị thì phương trình \(y' = 0\) phải có 3 nghiệm phân biệt.

\( \Rightarrow \) Phương trình \({x^2} = m - 1\) có 2 nghiệm phân biệt khác \(0\).

\( \Rightarrow m - 1 > 0 \Leftrightarrow m > 1\).

Khi đó ta có \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = {m^2} - m\\x = \sqrt {m - 1}  \Rightarrow y = m - 1\\x =  - \sqrt {m - 1}  \Rightarrow y = m - 1\end{array} \right.\)

Gọi \(A\left( {0;{m^2} - m} \right);\,\,B\left( {\sqrt {m - 1} ;m - 1} \right);\) \(C\left( { - \sqrt {m - 1} ;m - 1} \right)\).

Tam giác \(ABC\) cân tại \(A\), do đó để \(ABC\) là tam giác vuông thì phải vuông tại \(A\).

Ta có: \(\overrightarrow {AB}  = \left( {\sqrt {m - 1} ; - {m^2} + 2m - 1} \right);\,\,\)\(\overrightarrow {AC}  = \left( { - \sqrt {m - 1} ; - {m^2} + 2m - 1} \right)\).

\(\Delta ABC\) vuông tại \(A \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0\).

\(\begin{array}{l} \Leftrightarrow  - \left( {m - 1} \right) + {\left( {m - 1} \right)^4} = 0\\ \Leftrightarrow \left( {m - 1} \right)\left[ {{{\left( {m - 1} \right)}^3} - 1} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\m - 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\,\,\left( {ktm} \right)\\m = 2\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(S = \left\{ 2 \right\}\) nên tổng các phần tử của \(S\) bằng 2.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay