Câu hỏi

Một bác nông dân cần xây một hố ga không có nắp dạng hình hộp chữ nhật có thể tích \(25600\left( {c{m^3}} \right)\), tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng \(2\). Tính diện tích của đáy hố ga để khi xây hố ga tiết kiệm nguyên vật liệu nhất.

  • A \(640\left( {c{m^2}} \right)\)  
  • B \(1600\left( {c{m^2}} \right)\)
  • C \(160\left( {c{m^2}} \right)\)  
  • D \(6400\left( {c{m^2}} \right)\)  

Phương pháp giải:

Đưa diện tích của hố ga về phương trình 2 ẩn

Áp dụng BĐT AM – GM  biết mối liên hệ của 2 ẩn qua thể tích.

Lời giải chi tiết:

Gọi chiều dài và chiều rộng của hố ga lần lượt là \(a\) và \(b\)\(\left( {a,b > 0} \right)\)

Tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 nên chiều cao của hố ga bằng \(2b\)

Thể tích của hố ga bằng \(25600\left( {c{m^3}} \right)\) nên  \(2b.a.b = 25600 \Leftrightarrow a{b^2} = 12800\)

Diện tích toàn phần của hố ga không nắp là \({S_{tp}} = ab + 2.2b.a + 2.2b.b\)\( = ab + 4ab + 4{b^2} = 5ab + 4{b^2}\)

Áp dụng BĐT AM – GM ta có :

\({S_{tp}} = 5ab + 4{b^2}\)\( = \dfrac{5}{2}ab + \dfrac{5}{2}ab + 4{b^2} \ge 3\sqrt[3]{{\dfrac{5}{2}.\dfrac{5}{2}.4.{a^2}{b^4}}}\)\( = 3\sqrt[3]{{{{25.12800}^2}}} = 4800\)

Dấu ‘=’ xảy ra khi và chỉ khi \(\dfrac{5}{2}ab = 4{b^2} \Leftrightarrow a = \dfrac{8}{5}b \Rightarrow \left\{ \begin{array}{l}a = 32\\b = 20\end{array} \right.\)

Diện tích đáy của hố ga để xây hố ga tiêt kiệm nguyên liệu nhất là \(S = ab = 20.32 = 640\left( {c{m^2}} \right)\)

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay