Câu hỏi

Tìm tất cả các giá trị thực của tham số \(m\) để giá trị lớn nhất của hàm số \(y = \dfrac{{x + {m^2}}}{{x - 1}}\) trên đoạn \(\left[ {2;3} \right]\) bằng \(11\).

  • A \(m = 3\)  
  • B \(m = \sqrt {19} \)
  • C \(m =  \pm 3\)  
  • D \(m =  \pm \sqrt {19} \)

Phương pháp giải:

Xét tính đồng biến, nghịch biến của hàm số trên \(\left[ {2;3} \right]\) để tìm giá trị lớn nhất của hàm số.

Thay giá trị lớn nhất của hàm số để tìm \(m\).

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Suy ra hàm số đã cho xác định là liên tục trên đoạn \(\left[ {2;3} \right]\).

Ta có :

\(\begin{array}{l}y = f\left( x \right) = \dfrac{{x + {m^2}}}{{x - 1}}\\ \Rightarrow f'\left( x \right) = \dfrac{{1\left( {x - 1} \right) - 1.\left( {x + {m^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \dfrac{{ - \left( {{m^2} + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}} < 0,\forall x \in D\end{array}\)

Suy ra hàm số đã cho nghịch biến trên từng khoảng xác định hay hàm số nghịch biến trên đoạn  \(\left[ {2;3} \right]\).

Do đó \(\mathop {\max }\limits_{\left[ {2;3} \right]} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 11 = \dfrac{{2 + {m^2}}}{{2 - 1}} \Leftrightarrow {m^2} = 9 \Leftrightarrow m =  \pm 3\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay