Câu hỏi

So sánh \(P\) và \(Q\), với \(a > 0\) biết:

\(P = a - \left\{ {\left( {a - 3} \right) - \left[ {\left( {a + 3} \right) - \left( { - a - 2} \right)} \right]} \right\}\)

\(Q = \left[ {a + \left( {a + 3} \right)} \right] - \left[ {\left( {a + 2} \right) - \left( {a - 2} \right)} \right]\)

  • A \(P < Q\)
  • B \(P > Q\)
  • C \(P = Q\)
  • D Không so sánh được

Phương pháp giải:

- Áp dụng quy tắc dấu ngoặc, phép cộng, phép trừ số nguyên để rút gọn biểu thức \(P\) và \(Q\).

- So sánh \(P\) và \(Q\): 

+) \(a > b\) thì \(ka > kb\,\left( {k > 0} \right)\) hoặc \(ka < kb\,\left( {k < 0} \right)\).

+) \(a > b\) thì \(a + c > b + c\)

Lời giải chi tiết:

\(\begin{array}{l}P = a - \left\{ {\left( {a - 3} \right) - \left[ {\left( {a + 3} \right) - \left( { - a - 2} \right)} \right]} \right\}\\\,\,\,\, = a - \left[ {\left( {a - 3} \right) - \left( {a + 3 + a + 2} \right)} \right]\\\,\,\,\, = a - \left( {a - 3 - a - 3 - a - 2} \right)\\\,\,\,\, = a - \left( { - a - 8} \right)\\\,\,\,\, = a + a + 8\\\,\,\,\, = 2a + 8\end{array}\)

\(\begin{array}{l}Q = \left[ {a + \left( {a + 3} \right)} \right] + \left[ {\left( {a + 2} \right) - \left( {a - 2} \right)} \right]\\\,\,\,\,\, = \left( {a + a + 3} \right) + \left( {a + 2 - a + 2} \right)\\\,\,\,\, = \left( {2a + 3} \right) + 4\\\,\,\,\, = 2a + 3 + 4\\\,\,\,\, = 2a + 7\end{array}\)

Vì \(8 > 7 \) và \(a > 0\) \(\Rightarrow 8 + 2a > 7 + 2a \Rightarrow P > Q\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay