Câu hỏi

Cho hàm số \(y = {x^4} + \left( {m - 2} \right){x^2} - 2\left( {m + 2} \right)x + m + 5\) có đồ thị \(\left( {{C_m}} \right)\). Biết rằng mọi đường cong \(\left( {{C_m}} \right)\) đều tiếp xúc nhau tại 1 điểm. Viết phương trình tiếp tuyến chung của các đường cong \(\left( {{C_m}} \right)\) tại điểm đó?

  • A \(y = 0\)
  • B \(y =  - 4x + 4\)
  • C \(y =  - 4\)
  • D \(y =  - 4x - 4\)

Phương pháp giải:

- Tìm điểm cố định mà với mọi giá trị của \(m\) thì đồ thị hàm số luôn đi qua.

- Viết phương trình tiếp tuyến tại điểm đó.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,y = {x^4} + \left( {m - 2} \right){x^2} - 2\left( {m + 2} \right)x + m + 5\\ \Leftrightarrow y = \left( {{x^4} - 2{x^2} - 4x + 5} \right) + m\left( {{x^2} - 2x + 1} \right)\end{array}\)

Để \(\left( {{C_m}} \right)\) luôn đi qua 1 điểm khi \(m\) thay đổi thì \({x^2} - 2x + 1 = 0 \Leftrightarrow x = 1\)

Với \(x = 1\) thì \(y = 0\), suy ra đồ thị hàm số \(\left( {{C_m}} \right)\) luôn đi qua điểm cố định \(A\left( {1;0} \right)\).

Ta có: \(y' = f'\left( x \right) = 4{x^3} + 2\left( {m - 2} \right)x - 2\left( {m + 2} \right)\).

\( \Rightarrow f'\left( 1 \right) = 4 + 2.\left( {m - 2} \right).1 - 2\left( {m + 2} \right) = 4 + 2m - 4 - 2m - 4 =  - 4\)

Suy ra phương trình tiếp tuyến chung của các đường cong \(\left( {{C_m}} \right)\) tại điểm \(A\left( {1;0} \right)\) là:

\(d:y = f'\left( 1 \right)\left( {x - 1} \right) + 0 =  - 4\left( {x - 1} \right) =  - 4x + 4.\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay