Câu hỏi
Đoàn học sinh tham gia Hội thao Giáo dục quốc phòng và an ninh học sinh THPT cấp tỉnh lần thứ V năm 2018 của một trường THPT gồm có 8 học sinh nam và 7 học sinh nữ. Chọn ngấu nhiên 9 học sinh để tham gia bộ môn thi điều lệnh. Tính xác suất để trong 9 học sinh được chọn ra có đúng 5 học sinh nam.
- A \(\dfrac{{56}}{{134}}\)
- B \(\dfrac{{65}}{{143}}\)
- C \(\dfrac{{56}}{{143}}\)
- D \(\dfrac{{65}}{{134}}\)
Phương pháp giải:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Lời giải chi tiết:
Không gian mẫu : \(\Omega = C_{15}^9\)cách chọn.
Số cách chọn đúng 5 học sinh nam trong 8 học sinh nam và 4 học sinh nữ trong 7 học sinh nữ: \(C_8^5.C_7^4\) cách chọn.
Xác suất thỏa mãn là: \(\dfrac{{C_8^5.C_7^4}}{{C_{15}^9}} = \dfrac{{56}}{{143}}.\)