Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:
- A \(\frac{3}{2}\)
- B \(1\)
- C \(0\)
- D không tồn tại.
Phương pháp giải:
Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \(x = {x_0}\) là \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) (nếu tồn tại).
Lời giải chi tiết:
Ta có:
\(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{x\left( {x - 3} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = - \infty \)
Vậy hàm số không có đạo hàm tại x = 1.
Chọn D.