Câu hỏi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Giá trị của \(f'\left( 1 \right)\) bằng:

  • A \(\frac{3}{2}\)                
  • B \(1\)
  • C \(0\)
  • D không tồn tại.

Phương pháp giải:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \(x = {x_0}\) là \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) (nếu tồn tại).

Lời giải chi tiết:

Ta có:

\(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{x\left( {x - 3} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x\left( {x - 3} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} =  - \infty \)

Vậy hàm số không có đạo hàm tại x = 1.

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay