Câu hỏi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{{{x^2}}}\,\,\,khi\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:

  • A \(\frac{1}{3}\)                
  • B \( - \frac{5}{3}\)   
  • C \(\frac{3}{4}\)                
  • D không tồn tại.

Phương pháp giải:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \(x = {x_0}\) là \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) (nếu tồn tại).

Lời giải chi tiết:

Để hàm số có đạo hàm tại x = 0, trước hết hàm số phải liên tục tại x = 0.

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{4{x^2} + 8}} - 2}}{{{x^2}}} - \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {8{x^2} + 4}  - 2}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{4{x^2}}}{{{x^2}\left( {{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4} \right)}} - \mathop {\lim }\limits_{x \to 0} \frac{{8{x^2}}}{{{x^2}\left( {\sqrt {8{x^2} + 4}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{4}{{{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4}} - \mathop {\lim }\limits_{x \to 0} \frac{8}{{\sqrt {8{x^2} + 4}  + 2}} = \frac{1}{3} - 2 =  - \frac{5}{3}\end{array}\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay