Câu hỏi

Tìm \(x \in \mathbb{Z}\), biết:

Câu 1:

\(\left| x \right| + \left| { - 5} \right| = \left| { - 37} \right|\)

  • A \(x =  - 42\) hoặc \(x = 42\)
  • B \(x =  - 32\) hoặc \(x = 42\)
  • C \(x =  - 42\) hoặc \(x = 32.\)
  • D \(x = 32\) hoặc \(x =  - 32.\)

Phương pháp giải:

Áp dụng công thức: \(\left| x \right| = a = \left\{ \begin{array}{l}a\,\,\,\,\,\,\,\,khi\,\,\,\,\,\,a \ge 0\\ - a\,\,\,\,\,khi\,\,\,\,\,\,a < 0\end{array} \right..\)

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\left| x \right| + \left| { - 5} \right| = \left| { - 37} \right|\\\,\,\,\,\,\,\,\,\left| x \right| + 5\,\,\,\,\,\,\, = 37\\\,\,\,\,\,\,\,\,\left| x \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 37 - 5\\\,\,\,\,\,\,\,\,\left| x \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 32\\ \Rightarrow \left[ \begin{array}{l}x = 32\\x =  - 32\end{array} \right..\end{array}\)

Vậy \(x = 32\) hoặc \(x =  - 32.\)

Chọn D.


Câu 2:

\(\left| {x - 5} \right| = 13\)

  • A \(x = 8\) hoặc \(x =  - 8.\)
  • B \(x = 18\) hoặc \(x =  - 18.\)
  • C \(x = 18\) hoặc \(x =  - 8.\)
  • D \(x = 8\) hoặc \(x =  - 18.\)

Phương pháp giải:

Áp dụng công thức: \(\left| x \right| = a = \left\{ \begin{array}{l}a\,\,\,\,\,\,\,\,khi\,\,\,\,\,\,a \ge 0\\ - a\,\,\,\,\,khi\,\,\,\,\,\,a < 0\end{array} \right..\)

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,\,\,\,\left| {x - 5} \right| = 13\\ \Rightarrow \left[ \begin{array}{l}x - 5 = 13\\x - 5 =  - 13\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 13 + 5\\x =  - 13 + 5\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x = 18\\x =  - 8\end{array} \right..\end{array}\)

Vậy \(x = 18\) hoặc \(x =  - 8.\)

Chọn C.


Câu 3:

\(\left| {x + 1} \right| = \left| {x - 2} \right|\)

  • A \(x = 1\)
  • B \(x =  - 1\)
  • C \(x = 2\)
  • D \(x = \emptyset \)

Phương pháp giải:

Áp dụng công thức: \(\left| x \right| = a = \left\{ \begin{array}{l}a\,\,\,\,\,\,\,\,khi\,\,\,\,\,\,a \ge 0\\ - a\,\,\,\,\,khi\,\,\,\,\,\,a < 0\end{array} \right..\)

Lời giải chi tiết:

\(\begin{array}{l}\,\,\,\,\,\,\,\left| {x + 1} \right| = \left| {x - 2} \right|\\ \Rightarrow \left[ \begin{array}{l}x + 1 = x - 2\\x + 1 =  - \left( {x - 2} \right)\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}x - x =  - 2 - 1\\x + 1 =  - x + 2\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}0x =  - 3\,\,\,\,\left( {vo\,\,\,ly} \right)\\x + x = 2 - 1\end{array} \right.\\ \Rightarrow 2x = 1\\ \Rightarrow x = \frac{1}{2} \notin \mathbb{Z}\end{array}\)

Vậy không có \(x \in \mathbb{Z}\) thỏa mãn bài toán.

Chọn D.


Câu 4:

\(\left| {2 - x} \right| + 2 = x\)

  • A \(x = 2\)
  • B \(x \ge 2\)
  • C \(x \le 2\)
  • D \(x < 2\)

Phương pháp giải:

Áp dụng công thức: \(\left| x \right| = a = \left\{ \begin{array}{l}a\,\,\,\,\,\,\,\,khi\,\,\,\,\,\,a \ge 0\\ - a\,\,\,\,\,khi\,\,\,\,\,\,a < 0\end{array} \right..\)

Lời giải chi tiết:

\(\begin{array}{l}\left| {2 - x} \right| + 2 = x\\\left| {2 - x} \right|\,\,\,\,\,\,\,\,\, = x - 2\end{array}\)

TH1: Với \(2 - x \ge 0 \Rightarrow x \le 2 \Rightarrow \left| {2 - x} \right| = 2 - x.\).

\( \Rightarrow 2 - x = x - 2 \Rightarrow  - 2x =  - 4 \Rightarrow x = 2\) (thỏa mãn)

TH2: Với \(2 - x < 0 \Rightarrow x > 2 \Rightarrow \left| {2 - x} \right| = x - 2.\)

\( \Rightarrow x - 2 = x - 2 \Rightarrow 0x = 0\) (Vô số nghiệm)

Kết hợp hai trường hợp ta thấy \(x \ge 2\) thỏa mãn bài toán.

Vậy \(x \ge 2\).

Chọn B.



Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay