Câu hỏi

Có bao nhiêu giá trị m để đồ thị hàm số \(y = \dfrac{{m{{\rm{x}}^2} - 1}}{{{x^2} - 3x + 2}}\) có đúng 2 đường tiệm cận?

  • A 2
  • B \(\forall m\)
  • C 3
  • D 1

Lời giải chi tiết:

TH1: \(m = 0 \Rightarrow y = \dfrac{{ - 1}}{{{x^2} - 3x + 2}}\).

Bậc tử < bậc mẫu \( \Rightarrow \)TCN: \(y = 0\).

Xét: \({x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\,\left( {tm} \right)\\x = 1\,\,\,\,\left( {tm} \right)\end{array} \right. \Rightarrow \) Hàm số có 3 đường tiệm cận \( \Rightarrow m = 0\) (loại).

TH2: \(m \ne 0 \Rightarrow y = \dfrac{{m{x^2} - 1}}{{{x^2} - 3x + 2}}\).

Bậc tử = Bậc mẫu \( \Rightarrow \) Có 1 TCN \( \Rightarrow \) Để hàm số có 2 đường tiệm cận thì phải có thêm 1 TCĐ \( \Leftrightarrow \) MS = 0 có 2 nghiệm phân biệt và 1 nghiệm trùng nghiệm tử.

+ MS = 0 \( \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 1\end{array} \right.\).

Xét Tử = \(0 \Leftrightarrow m{x^2} - 1 = 0\).

Nếu Trùng nghiệm \(x = 1 \Rightarrow m{.1^2} - 1 = 0 \Leftrightarrow m = 1\).

Nếu Trùng nghiệm \(x = 2 \Rightarrow m{.2^2} - 1 = 0 \Leftrightarrow m = \dfrac{1}{4}\).

Vậy \(m = 1;\,\,m = \dfrac{1}{4}\) hàm số có 2 đường tiệm cận \( \Rightarrow \)Có 2 giá trị \(m\) thoả mãn.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay