Câu hỏi

Tính tổng \(S = C_{2018}^0 + \dfrac{1}{2}C_{2018}^1 + \dfrac{1}{3}C_{2018}^2 + ... + \dfrac{1}{{2018}}C_{2018}^{2017} + \dfrac{1}{{2019}}C_{2018}^{2018}\)

  • A \(S = \dfrac{{{2^{2018}} + 1}}{{2019}}\)
  • B \(S = \dfrac{{{2^{2018}} - 1}}{{2019}} + 1\)
  • C \(S = \dfrac{{{2^{2019}} - 1}}{{2019}}\)
  • D \(S = \dfrac{{{2^{2018}} - 1}}{{2019}} - 1\)

Phương pháp giải:

Tính tổng \(2019S\) bằng cách nhận xét số hạng tổng quát của tổng này.

Lời giải chi tiết:

Ta có : \(S = C_{2018}^0 + \dfrac{1}{2}C_{2018}^1 + \dfrac{1}{3}C_{2018}^2 + ... + \dfrac{1}{{2018}}C_{2018}^{2017} + \dfrac{1}{{2019}}C_{2018}^{2018} = \sum\limits_{k = 0}^{2018} {\dfrac{1}{{k + 1}}C_{2018}^k} \)

\( \Rightarrow 2019S = \sum\limits_{k = 0}^{2018} {\dfrac{{2019}}{{k + 1}}C_{2018}^k}  = \sum\limits_{k = 0}^{2018} {\dfrac{{2019}}{{k + 1}}.\dfrac{{2018!}}{{k!\left( {2018 - k} \right)!}}} \)\( = \sum\limits_{k = 0}^{2018} {\dfrac{{2019!}}{{\left( {k + 1} \right)!\left( {2019 - \left( {k + 1} \right)} \right)!}}}  = \sum\limits_{k = 0}^{2018} {C_{2019}^{k + 1}} \)

\( = C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019}\)\( \Rightarrow 2019S + C_{2019}^0 = C_{2019}^0 + C_{2019}^1 + C_{2019}^2 + ... + C_{2019}^{2019} = {2^{2019}}\)

\( \Rightarrow 2019S = {2^{2019}} - C_{2019}^0 = {2^{2019}} - 1 \Rightarrow S = \dfrac{{{2^{2019}} - 1}}{{2019}}\).

Chọn C


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay