Câu hỏi

Tìm \(m\) để hàm số: \(f\left( x \right) = \frac{{{x^2}\left( {{x^2} - 2} \right) + \left( {2{m^2} - 2} \right)x}}{{\sqrt {{x^2} + 1}  - m}}\) là hàm số chẵn.

  • A \(m = 0\)          
  • B \(m = 1\)                      
  • C \(m =  \pm 2\)
  • D \(m =  \pm 1\)

Phương pháp giải:

\(\left. \begin{array}{l}\forall x \in D \Rightarrow  - x \in D\\f\left( { - x} \right) = f\left( x \right)\end{array} \right\} \Rightarrow f\left( x \right)\) là hàm số chẵn và có đồ thị hàm số đối xứng qua trục tung \(Oy.\)

Lời giải chi tiết:

ĐKXĐ: \(\sqrt {{x^2} + 1}  \ne m\,\,\,\left( * \right)\) (*)

Hàm số đã cho là hàm số chẵn \( \Leftrightarrow f\left( { - x} \right) = f\left( x \right)\)  với mọi \(x\) thỏa mãn điều kiện \(\left( * \right)\)

\( \Leftrightarrow \frac{{{x^2}\left( {{x^2} - 2} \right) - \left( {2{m^2} - 2} \right)x}}{{\sqrt {{x^2} + 1}  - m}} = \frac{{{x^2}\left( {{x^2} - 2} \right) + \left( {2{m^2} - 2} \right)x}}{{\sqrt {{x^2} + 1}  - m}}\) với mọi \(x\)  thỏa mãn điều kiện \(\left( * \right)\)

\( \Leftrightarrow {x^2}\left( {{x^2} - 2} \right) - \left( {2{m^2} - 2} \right)x = {x^2}\left( {{x^2} - 2} \right) + \left( {2{m^2} - 2} \right)x\) với mọi \(x\) thỏa mãn điều kiện (*)

\( \Leftrightarrow 2\left( {2{m^2} - 2} \right)x = 0\) với mọi \(x\) thỏa mãn điều kiện (*)

\( \Leftrightarrow 2{m^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 1\end{array} \right.\)

*  Với \(m = 1\) ta có hàm số là \(f\left( x \right) = \frac{{{x^2}\left( {{x^2} - 2} \right)}}{{\sqrt {{x^2} + 1}  - 1}}\)

ĐKXĐ : \(\sqrt {{x^2} + 1}  \ne 1 \Leftrightarrow x \ne 0\)

Suy ra TXĐ: \({\rm{D}} = \mathbb{R}\backslash \left\{ 0 \right\}\)

Dễ thấy với mọi \(x \in \mathbb{R}\backslash \left\{ 0 \right\}\) ta có \( - x \in \mathbb{R}\backslash \left\{ 0 \right\}\) và \(f\left( { - x} \right) = f\left( x \right)\)

Do đó \(f\left( x \right) = \frac{{{x^2}\left( {{x^2} - 2} \right)}}{{\sqrt {{x^2} + 1}  - 1}}\) là hàm số chẵn.

*  Với \(m =  - 1\)  ta có hàm số là \(f\left( x \right) = \frac{{{x^2}\left( {{x^2} - 2} \right)}}{{\sqrt {{x^2} + 1}  + 1}}\)

TXĐ: \({\rm{D}} = \mathbb{R}\)

Dễ thấy với mọi \(x \in \mathbb{R}\) ta có \( - x \in \mathbb{R}\) và \(f\left( { - x} \right) = f\left( x \right)\)

Do đó \(f\left( x \right) = \frac{{{x^2}\left( {{x^2} - 2} \right)}}{{\sqrt {{x^2} + 1}  + 1}}\) là hàm số chẵn.

Vậy \(m =  \pm 1\) là giá trị cần tìm.

Chọn  D.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay