Câu hỏi
Một lớp học có 3 tổ. Tổ I gồm có 3 học sinh nam và 7 học sinh nữ; tổ II gồm có 5 học sinh nam và 5 học sinh nữ; tổ III gồm 6 học sinh nam và 4 học sinh nữ. Cô giáo chủ nhiệm cần chọn ra một học sinh nam và một học sinh nữ để tham gia hoạt động tình nguyện. Hỏi cô giáo có bao nhiêu cách chọn, nếu cô muốn chọn hai em học sinh ở hai tổ khác nhau?
- A \(154\)
- B \(145\)
- C \(242\)
- D \(224\)
Phương pháp giải:
Liệt kê và đếm số cách chọn \(2\) bạn thỏa mãn có \(1\) bạn nam và \(1\) bạn nữ tổ khác.
Các trường hợp: nam tổ \(I\) và nữ hai tổ còn lại; nam tổ \(II\) và nữ hai tổ còn lại; nam tổ \(III\) và nữ hai tổ còn lại
Lời giải chi tiết:
Số cách chọn \(1\) bạn nam tổ \(I\) và \(1\) bạn nữ hai tổ còn lại là \(C_3^1.C_9^1 = 27\) cách chọn.
Số cách chọn \(1\) bạn nam tổ \(II\) và \(1\) bạn nữ hai tổ còn lại là \(C_5^1.C_{11}^1 = 55\) cách chọn.
Số cách chọn \(1\) bạn nam tổ \(III\) và \(1\) bạn nữ hai tổ còn lại là \(C_6^1.C_{12}^1 = 72\) cách chọn.
Vậy có \(27 + 55 + 72 = 154\) cách chọn.
Chọn A