Câu hỏi

Cho hình chóp S.ABCD có đáy là hình bình hành với \(AB = 2a,BC = a\sqrt 2 ,BD = a\sqrt 6 \). Hình chiếu vuông góc của S lên (ABCD) là trọng tâm G của tam giác BCD, khoảng cách từ điểm B đến (SAC) theo a là:

  • A \(\dfrac{{2a}}{{3\sqrt 3 }}\)
  • B \(\dfrac{{2a}}{{\sqrt 3 }}\)
  • C \(\dfrac{{2a}}{{\sqrt 7 }}\)
  • D Đáp án khác

Lời giải chi tiết:

Trong (ABCD) kẻ \(BE \bot AC\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BE \bot AC\\BE \bot SG\,\,\left( {SG \bot \left( {ABCD} \right)} \right)\end{array} \right.\\ \Rightarrow BE \bot \left( {SAC} \right) \Rightarrow d\left( {B;\left( {SAC} \right)} \right) = BE\end{array}\)

Ta có: \(B{C^2} + C{D^2} = 2{a^2} + 4{a^2} = 6{a^2} = B{D^2} \Rightarrow \Delta BCD\) vuông tại C\( \Rightarrow ABCD\) là hình chữ nhật (Hình bình hành có 1 góc vuông)

Xét tam giác vuông ABC có: \(\dfrac{1}{{B{E^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{B{C^2}}} = \dfrac{1}{{4{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{3}{{4{a^2}}} \Rightarrow BE = \dfrac{{2a}}{{\sqrt 3 }}\)

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay