Câu hỏi

Cho số phức \(z = a + bi\,\left( {a,\,b \in \mathbb{R}} \right)\)thỏa mãn \(z - \left( {2 + 3i} \right)\overline z  = 1 - 9i\). Tính \(T = ab + 1\).

  • A \(T =  - 2\).      
  • B \(T = 0\).
  • C \(T = 1\).
  • D \(T =  - 1\).

Phương pháp giải:

- Thay \(z,\overline z \) vào điều kiện bài toán, sử dụng định nghĩa hai số phức bằng nhau suy ra hệ phương trình ẩn \(a,b\)

- Giải hệ phương trình tìm \(a,b\) và kết luận.

Lời giải chi tiết:

Ta có : \(z = a + bi \Rightarrow \overline z  = a - bi\).

Thay vào điều kiện bài cho ta được : \(\left( {a + bi} \right) - \left( {2 + 3i} \right)\left( {a - bi} \right) = 1 - 9i\)

\(\begin{array}{l} \Leftrightarrow a + bi - \left( {2a + 3b + \left( {3a - 2b} \right)i} \right) = 1 - 9i \Leftrightarrow a + bi - \left( {2a + 3b} \right) - \left( {3a - 2b} \right)i = 1 - 9i\\ \Leftrightarrow \left( { - a - 3b} \right) + \left( {3b - 3a} \right)i = 1 - 9i \Leftrightarrow \left\{ \begin{array}{l} - a - 3b = 1\\3b - 3a =  - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b =  - 1\end{array} \right.\\ \Rightarrow T = ab + 1 = 2.\left( { - 1} \right) + 1 =  - 1\end{array}\) 

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay