Câu hỏi

Cho số phức \(z\)  thỏa mãn\(\overline z  + \left( {1 - i} \right)z = 9 - 2i\). Tìm mô đun của \(z.\)

  • A \(\left| z \right| = 7\)                   
  • B \(\left| z \right| = 21\)                
  • C \(\left| z \right| = 7\)                   
  • D \(\left| z \right| = \sqrt {29} \)

Phương pháp giải:

+) Gọi \(z = x + yi\,\,\,\left( {x;y \in \mathbb{R}} \right)\) thì số phức liên hợp \(\overline z  = x - yi\) và mô đun \(\left| z \right| = \sqrt {{x^2} + {y^2}} \)

+) Biến đổi giả thiết để đưa về hai số phức bằng nhau thì phần thực bằng nhau và phần ảo bằng nhau.

Lời giải chi tiết:

Gọi \(z = x + yi\,\,\,\left( {x;y \in \mathbb{R}} \right)\) thì số phức liên hợp \(\overline z  = x - yi\)

Ta có \(\overline z  + \left( {1 - i} \right)z = 9 - 2i \Leftrightarrow x - yi + \left( {1 - i} \right)\left( {x + yi} \right) = 9 - 2i\)

\( \Leftrightarrow x - yi + x + y + yi - xi = 9 - 2i \Leftrightarrow 2x + y - xi = 9 - 2i\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x + y = 9\\ - x =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right.\). Suy ra \(z = 2 + 5i \Rightarrow \left| z \right| = \sqrt {{2^2} + {5^2}}  = \sqrt {29} .\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay