Câu hỏi
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}{\rm{\backslash }}\left\{ 0 \right\}\) và \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,\,\forall x \ne 0\). Tính \(I = \int\limits_1^2 {f\left( x \right)dx} \)?
- A \(2\ln 2\).
- B \(\ln 2 - \frac{3}{2}\).
- C \(2\ln 2 - \frac{3}{2}\).
- D \(2\ln 3 + \frac{3}{2}\).
Phương pháp giải:
Xác định hàm số \(f\left( x \right)\), từ đó tính tích phân \(I = \int\limits_1^2 {f\left( x \right)dx} \).
Lời giải chi tiết:
Với mọi \(x \ne 0\), ta có: \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x\,\, \Rightarrow f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{3}{x}\,\)\(\begin{array}{l} \Rightarrow \left( {f\left( x \right) + 2f\left( {\frac{1}{x}} \right)} \right) - 2\left( {f\left( {\frac{1}{x}} \right) + 2f\left( x \right)} \right) = 3x - \frac{6}{x} \Leftrightarrow - 3f\left( x \right) = 3x - \frac{6}{x}\\ \Leftrightarrow f\left( x \right) = \frac{2}{x} - x\end{array}\)
Khi đó: \(I = \int\limits_1^2 {f\left( x \right)dx} = \int\limits_1^2 {\left( {\frac{2}{x} - x} \right)dx} = \left. {\left( {2\ln \left| x \right| - \frac{1}{2}{x^2}} \right)} \right|_1^2 = 2\ln 2 - \frac{3}{2}\).
Chọn: C