Môn Toán - Lớp 12
30 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hai hàm số \(y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}\) và \(y = \dfrac{{5 - 2x}}{{x + 4}}\). Tập hợp các giá trị của tham số \(m\) để hai đường tiệm cận đứng của hai đồ thị hàm số trên trùng nhau là:
- A {-2,2}
- B {-1;2}
- C {0}
- D {2;3}
Phương pháp giải:
Tìm TCĐ của đồ thị hàm số \(y = \frac{{5 - 2x}}{{x + 4}}.\)
Tìm TCĐ của đồ thị hàm số \(y = \frac{{2x - 1}}{{{m^2} - 8 - x}}\) theo \(m.\)
Sau đó cho hai giá trị đó bằng nhau để tìm \(m.\)
Lời giải chi tiết:
Xét đồ thị hàm số \(y = \dfrac{{5 - 2x}}{{x + 4}}\) có TCĐ là \(x = - 4\).
Suy ra hai đồ thị hàm số đã cho có tiệm cận đứng trùng nhau \( \Leftrightarrow x = - 4\) là TCĐ của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{{m^2} - 8 - x}}\).
Ta thấy \(x = - 4\) không là nghiệm của tử số \( \Rightarrow x = - 4\) là TCĐ của đồ thị hàm số\( \Leftrightarrow {m^2} - 8 = - 4 \Leftrightarrow {m^2} - 8 + 4 = 0\)\( \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\).
Chọn A.