Câu hỏi
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2{x^3} + 3{x^2} - 1\) trên đoạn\(\left[ { - 2; - \dfrac{1}{2}} \right]\). Tính \(P = M - m\).
- A \(P = - 5\)
- B \(P = 1\)
- C \(P = 5\)
- D
\(P = 4\)
Phương pháp giải:
Để tìm GTNN, GTLN của hàm số \(f\) trên đoạn \(\left[ {a;b} \right]\), ta làm như sau:
- Tìm các điểm \({x_1};{x_2};...;{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số \(f\) có đạo hàm bằng 0 hoặc không có đạo hàm.
- Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);\,\,f\left( a \right);\,f\left( b \right)\)
- So sánh các giá trị vừa tìm được. Số lớn nhất trong các giá trị đó chính là GTLN của \(f\) trên \(\left[ {a;b} \right]\); số nhỏ nhất trong các giá trị đó chính là GTNN của \(f\) trên \(\left[ {a;b} \right]\).
Lời giải chi tiết:
\(f\left( x \right) = 2{x^3} + 3{x^2} - 1 \Rightarrow f'\left( x \right) = 6{x^2} + 6x\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\,\left( {ktm} \right)\\x = - 1\,\,\,\left( {tm} \right)\end{array} \right.\)
Hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 2; - \dfrac{1}{2}} \right]\), có \(f\left( { - 2} \right) = - 5;\,\,f\left( { - 1} \right) = 0;\,\,f\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2}\)
\( \Rightarrow m = \mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = - 5;\,\,M = \mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = 0\)\( \Rightarrow P = M - m = 5\).
Chọn: C