Câu hỏi

Hàm số \(y = {\left( { - 2x + 1} \right)^{2018}}\) có đạo hàm là:

  • A \(2018{\left( { - 2x + 1} \right)^{2017}}\)
  • B \(2{\left( { - 2x + 1} \right)^{2017}}\)
  • C \(4036{\left( { - 2x + 1} \right)^{2017}}\)
  • D \( - 4036{\left( { - 2x + 1} \right)^{2017}}\)

Phương pháp giải:

Sử dụng công thức tính đạo hàm \(\left( {{u^n}} \right)' = n{u^{n - 1}}.u'\).

Lời giải chi tiết:

\(\begin{array}{l}y' = 2018{\left( { - 2x + 1} \right)^{2017}}\left( { - 2x + 1} \right)'\\\,\,\,\,\, = 2018{\left( { - 2x + 1} \right)^{2017}}.\left( { - 2} \right)\\\,\,\,\,\, =  - 4036{\left( { - 2x + 1} \right)^{2017}}\end{array}\)

Chọn D


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay