Với giá trị nào của m thì ba đường thẳng \({d_1}:y = \left( {m + 2} \right)x - 3;\)
\({d_2}:y = 3x + 1\) và \({d_3}:y = 2x - 5\) giao nhau tại một điểm?
-
A.
$m = \dfrac{1}{3}$
-
B.
$m = - \dfrac{1}{3}$
-
C.
$m = - 1$
-
D.
$m = 1$
Bước 1. Tìm tọa độ giao điểm của hai đường thẳng trong ba đường thẳng đã cho.
Bước 2. Thay tọa độ giao điểm vừa tìm được vào đường thẳng còn lại để tìm $m$.
Xét phương trình hoành độ giao điểm của ${d_2}$ và ${d_3}$:
$3x + 1 = 2x - 5 \Leftrightarrow x = - 6$$ \Rightarrow y = - 17$. Suy ra giao điểm của ${d_3}$ và ${d_2}$ là $M\left( { - 6; - 17} \right).$
Để ba đường thẳng trên đồng quy thì $M \in {d_1}$ nên $ - 17 = \left( {m + 2} \right).\left( { - 6} \right) - 3 \Leftrightarrow 6\left( {m + 2} \right) = 14 \Leftrightarrow m = \dfrac{1}{3}$
Vậy $m = \dfrac{1}{3}$.
Đáp án : A
Các bài tập cùng chuyên đề
Chọn khẳng định đúng về đồ thị hàm số \(y = ax + b(a \ne 0).\)
Đồ thị hàm số $y = 3\left( {x - 1} \right) + \dfrac{4}{3}$ đi qua điểm nào dưới đây?
Cho hai đường thẳng ${d_1}:y = 2x - 2$ và ${d_2}:y = 3 - 4x$. Tung độ giao điểm của ${d_1};{d_2}$ có tọa độ là
Cho đường thẳng $d:y = 3x - \dfrac{1}{2}$. Giao điểm của $d$ với trục tung là
Cho hàm số $y = \left( {1 - m} \right)x + m$ . Xác định $m$ để đồ thị hàm số cắt trục hoành tại điểm có hoành độ $x = - 3$
Cho hàm số $y = \left( {3 - 2m} \right)x + m - 2$ . Xác định $m$ để đồ thị hàm số cắt trục tung tại điểm có tung độ $y = - 4$.
Cho hàm số $y = mx - 2$ có đồ thị là đường thẳng ${d_1}$ và hàm số $y = \dfrac{1}{2}x + 1$ có đồ thị là đường thẳng ${d_2}$. Xác định $m$ để hai đường thẳng ${d_1}$ và ${d_2}$ cắt nhau tại một điểm có hoành độ $x = - 4$.
Cho hàm số $y = \left( {m + 1} \right)x - 1$ có đồ thị là đường thẳng ${d_1}$ và hàm số $y = x + 1$ có đồ thị là đường thẳng ${d_2}$. Xác định $m$ để hai đường thẳng ${d_1}$ và ${d_2}$ cắt nhau tại một điểm có tung độ $y = 4$.
Với giá trị nào của m thì đồ thị hàm số \(y = - 2x + m + 2\) và \(y = 5x + 5 - 2m\) cắt nhau tại một điểm trên trục tung?
Cho ba đường thẳng\({d_1}:y = - 2x;{d_2}:y = - 3x - 1;\)
\({d_3}:y = x + 3.\) Khẳng định nào dưới đây là đúng?
Với giá trị nào của m thì ba đường thẳng \({d_1}:y = x;{d_2}:y = 4 - 3x\) và \({d_3}:y = mx - 3\) đồng quy?
Cho đường thẳng \(d:y = - 2x - 4\) . Gọi $A,B$ lần lượt là giao điểm của $d$ với trục hoành và trục tung. Tính diện tích tam giác $OAB.$
Cho đường thẳng \({d_1}:y = - x + 2\) và ${d_2}:y = 5 - 4x$. Gọi $A,B$ lần lượt là giao điểm của ${d_1}$ với ${d_2}$ và ${d_1}$ với trục hoành. Tổng hoành độ giao điểm của $A$ và $B$ là
Gọi \({d_1}\) là đồ thị hàm số \(y = mx + 1\) và \({d_2}\) là đồ thị hàm số \(y = \dfrac{1}{2}x - 2.\)
Xác định giá trị của $m$ để $M\left( {2; - 1} \right)$ là giao điểm của ${d_1}$ và ${d_2}$.
Trong các hình vẽ sau, hình vẽ nào là đồ thị hàm số $y = 2x + 1$
Hình vẽ bên là đồ thị của hàm số nào dưới đây?
