Gọi \({d_1}\) là đồ thị hàm số \(y = mx + 1\) và \({d_2}\) là đồ thị hàm số \(y = \dfrac{1}{2}x - 2.\)
Xác định giá trị của $m$ để $M\left( {2; - 1} \right)$ là giao điểm của ${d_1}$ và ${d_2}$.
-
A.
$m = 1$
-
B.
$m = 2$
-
C.
$m = - 1$
-
D.
$m = - 2$
Để $M\left( {{x_0};{y_0}} \right)$ là giao của hai đường thẳng ${d_1}$ và ${d_2}$ ta thay tọa độ điểm $M$ vào từng phương trình đường thẳng để tìm $m$.
+) Nhận thấy $M \in {d_2}$.
+) Ta thay tọa độ điểm $M$ vào phương trình ${d_1}$ được phương trình $ - 1 = 2.m + 1 \Leftrightarrow m = - 1$
Vậy $m = - 1$.
Đáp án : C
Các bài tập cùng chuyên đề
Chọn khẳng định đúng về đồ thị hàm số \(y = ax + b(a \ne 0).\)
Đồ thị hàm số $y = 3\left( {x - 1} \right) + \dfrac{4}{3}$ đi qua điểm nào dưới đây?
Cho hai đường thẳng ${d_1}:y = 2x - 2$ và ${d_2}:y = 3 - 4x$. Tung độ giao điểm của ${d_1};{d_2}$ có tọa độ là
Cho đường thẳng $d:y = 3x - \dfrac{1}{2}$. Giao điểm của $d$ với trục tung là
Cho hàm số $y = \left( {1 - m} \right)x + m$ . Xác định $m$ để đồ thị hàm số cắt trục hoành tại điểm có hoành độ $x = - 3$
Cho hàm số $y = \left( {3 - 2m} \right)x + m - 2$ . Xác định $m$ để đồ thị hàm số cắt trục tung tại điểm có tung độ $y = - 4$.
Cho hàm số $y = mx - 2$ có đồ thị là đường thẳng ${d_1}$ và hàm số $y = \dfrac{1}{2}x + 1$ có đồ thị là đường thẳng ${d_2}$. Xác định $m$ để hai đường thẳng ${d_1}$ và ${d_2}$ cắt nhau tại một điểm có hoành độ $x = - 4$.
Cho hàm số $y = \left( {m + 1} \right)x - 1$ có đồ thị là đường thẳng ${d_1}$ và hàm số $y = x + 1$ có đồ thị là đường thẳng ${d_2}$. Xác định $m$ để hai đường thẳng ${d_1}$ và ${d_2}$ cắt nhau tại một điểm có tung độ $y = 4$.
Với giá trị nào của m thì đồ thị hàm số \(y = - 2x + m + 2\) và \(y = 5x + 5 - 2m\) cắt nhau tại một điểm trên trục tung?
Cho ba đường thẳng\({d_1}:y = - 2x;{d_2}:y = - 3x - 1;\)
\({d_3}:y = x + 3.\) Khẳng định nào dưới đây là đúng?
Với giá trị nào của m thì ba đường thẳng \({d_1}:y = x;{d_2}:y = 4 - 3x\) và \({d_3}:y = mx - 3\) đồng quy?
Cho đường thẳng \(d:y = - 2x - 4\) . Gọi $A,B$ lần lượt là giao điểm của $d$ với trục hoành và trục tung. Tính diện tích tam giác $OAB.$
Cho đường thẳng \({d_1}:y = - x + 2\) và ${d_2}:y = 5 - 4x$. Gọi $A,B$ lần lượt là giao điểm của ${d_1}$ với ${d_2}$ và ${d_1}$ với trục hoành. Tổng hoành độ giao điểm của $A$ và $B$ là
Với giá trị nào của m thì ba đường thẳng \({d_1}:y = \left( {m + 2} \right)x - 3;\)
\({d_2}:y = 3x + 1\) và \({d_3}:y = 2x - 5\) giao nhau tại một điểm?
Trong các hình vẽ sau, hình vẽ nào là đồ thị hàm số $y = 2x + 1$
Hình vẽ bên là đồ thị của hàm số nào dưới đây?
