Đề bài

Cho parabol \(\left( P \right):y = {x^2}\) và \(d:y = 4x + 5.\)

Câu 1

Tìm tọa độ giao điểm \(A,B\) của \(\left( P \right)\) và \(d\).

    A.

    \(A\left( { - 1;1} \right);B\left( {5;25} \right)\)

    B.

    \(A\left( {-1;1} \right);B\left( {-5;25} \right)\)

    C.

    \(A\left( {1;1} \right);B\left( {5;25} \right)\)

    D.

    \(A\left( { - 1; - 1} \right);B\left( { - 5; - 25} \right)\)

Đáp án: A

Phương pháp giải

Giải phương trình hoành độ giao điểm  tìm được hoành độ \(x\), thay trở lại hàm số tìm được \(y\) từ đó giao điểm có tọa độ \(\left( {x;y} \right)\).

Lời giải của GV Loigiaihay.com

Phương trình hoành độ giao điểm \({x^2} = 4x + 5 \Leftrightarrow {x^2} - 4x - 5 = 0\)\( \Leftrightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0 \)\(\Leftrightarrow \left[ \begin{array}{l}x =  - 1 \Rightarrow y = {\left( { - 1} \right)^2} = 1\\x = 5 \Rightarrow y = {5^2} = 25\end{array} \right.\)

Giao điểm của \(d\) và \(\left( P \right)\) là \(A\left( { - 1;1} \right);B\left( {5;25} \right)\).

Xem thêm các câu hỏi cùng đoạn
Câu 2

Với giao điểm \(A,B\) của\(\left( P \right)\) và \(d\) ở ý trước . Gọi \(C,D\) lần lượt là hình chiếu vuông góc của \(A,B\) lên \({\rm{Ox}}\). Tính diện tích tứ giác \({\rm{ABDC}}\).

    A.

    \({S_{ABDC}} = 78\,\,\)(đvdt)

    B.

    \({S_{ABDC}} = 156\) (đvdt)

    C.

    \({S_{ABDC}} = 39\,\,\) (đvdt)

    D.

    \({S_{ABDC}} = 30\,\,\)(đvdt)

Đáp án: A

Phương pháp giải

+) Vẽ hình trên cùng một hệ trục tọa độ

+) Xác định tọa độ \(C,D\)

+) Tính diện tích hình thang vuông \({\rm{ABCD}}\). Sử dụng công thức tính độ dài \(A\left( {{x_A};{y_A}} \right);B\left( {{x_B};{y_B}} \right) \Rightarrow AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \)

Lời giải của GV Loigiaihay.com

Ta có \(A\left( { - 1;1} \right);B\left( {5;25} \right)\) nên \(C\left( { - 1;0} \right);D\left( {5;0} \right)\)

\( \Rightarrow AC = \sqrt {{0^2} + {{\left( { - 1} \right)}^2}}  = 1;\)\(DC = 6;BD = \sqrt {{0^2} + {{25}^2}}  = 25\)

Vì \(AC \bot BC;BD \bot BC \Rightarrow ABDC\) là hình thang vuông nên \({S_{ABDC}} = \dfrac{{\left( {AC + BD} \right).DC}}{2} \)\(= \dfrac{{\left( {1 + 25} \right).6}}{2} = 78\) (đvdt)


Các bài tập cùng chuyên đề

Bài 1 :

Đường thẳng $d:y = mx + n$ và  parabol  $\left( P \right):y = a{x^2}$$\left( {a \ne 0} \right)$ tiếp xúc với nhau khi  phương trình $a{x^2} = mx + n$ có

Xem lời giải >>
Bài 2 :

Chọn khẳng định đúng. Nếu phương trình $a{x^2} = mx + n$ vô nghiệm thì đường thẳng $d:y = mx + n$ và  parabol  $\left( P \right):y = a{x^2}$

Xem lời giải >>
Bài 3 :

Số giao điểm của đường thẳng $d:y = 2x + 4$ và  parabol  $\left( P \right):y = {x^2}$ là:

Xem lời giải >>
Bài 4 :

Tìm tham số $m$ để đường thẳng $d:y = \dfrac{1}{2}x + m$ tiếp xúc với  parabol  $\left( P \right):y = \dfrac{{{x^2}}}{2}$

Xem lời giải >>
Bài 5 :

Tìm tham số $m$ để đường thẳng $d:y = mx + 2$ cắt  parabol  $\left( P \right):y = \dfrac{{{x^2}}}{2}$  tại hai điểm phân biệt

Xem lời giải >>
Bài 6 :

Tìm tham số $m$ để đường thẳng $d:y = 2x + m$ và  parabol  $\left( P \right):y = 2{x^2}$  không có điểm chung

Xem lời giải >>
Bài 7 :

Tìm tham số $m$ để đường thẳng $d:y = mx + m + 1$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.

Xem lời giải >>
Bài 8 :

Tìm tham số $m$ để đường thẳng $d:y = \left( {m - 2} \right)x + 3m$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt nằm hai phía của trục tung.

Xem lời giải >>
Bài 9 :

Có bao nhiêu giá trị của  tham số $m$ để đường thẳng $d:y = 2mx + 4$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn $\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} =  - 3$

Xem lời giải >>
Bài 10 :

Có bao nhiêu giá trị nguyên của  tham số $m$ để đường thẳng $d:y = 2mx - 2m + 3$ và  parabol  $\left( P \right):y = {x^2}$  cắt nhau tại hai điểm phân biệt có tọa độ $\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)$ thỏa mãn ${y_1} + {y_2} < 9$

Xem lời giải >>
Bài 11 :

Cho đường thẳng \(d\) :\(y =  - 3x + 1\) và parabol : \(\left( P \right)\)\(y = m{x^2}\left( {m \ne 0} \right)\). Tìm \(m\) để \(d\) và \(\left( P \right)\) cắt nhau tại hai điểm \(A\) và \(B\) phân biệt và cùng nằm về một phía đối với trục tung.

Xem lời giải >>
Bài 12 :

Tìm giá trị của  tham số $m$ để đường thẳng $d:y =  - \dfrac{1}{2}x + m$ và  parabol  $\left( P \right):y =  - \dfrac{1}{4}{x^2}$  cắt nhau tại hai điểm phân biệt có hoành độ ${x_1};{x_2}$ thỏa mãn \(3{x_1} + 5{x_2} = 5\)

Xem lời giải >>
Bài 13 :

Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = \left( {{m^2} + 2} \right)x - {m^2}\). Tìm \(m\) để \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt nằm về bên phải trục tung.

Xem lời giải >>
Bài 14 :

Cho parabol \(\left( P \right)\) có đỉnh \(O\) và đi qua điểm \(A\left( {2;4} \right)\) và đường thẳng  \(\left( d \right):y = 2(m - 1)x + 2m + 2\) (với \(m\) là tham số). Giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\)  tại hai điểm phân biệt là

Xem lời giải >>
Bài 15 :

Cho parabol \(\left( P \right):y = a{x^2}\left( {a \ne 0} \right)\)  đi qua điểm \(A\left( { - 2;4} \right)\) và tiếp xúc với đồ thị \(\left( d \right)\) của hàm số \(y = 2(m - 1)x - (m - 1)\).Toạ độ tiếp điểm là

Xem lời giải >>