Đề bài

Tìm tham số $m$ để đường thẳng $d:y = 2x + m$ và  parabol  $\left( P \right):y = 2{x^2}$  không có điểm chung

  • A.

    $m <  - \dfrac{1}{2}$ 

  • B.

    $m \le  - \dfrac{1}{2}$ 

  • C.

    $m > \dfrac{1}{2}$ 

  • D.

    $m \ge \dfrac{1}{2}$ 

Phương pháp giải

Bước 1: Xét phương trình hoành độ giao điểm của đường thẳng và parabol

Bước 2: Để đường thẳng không cắt parabol thì phương trình hoành độ giao điểm vô nghiệm

Lời giải của GV Loigiaihay.com

Xét phương trình hoành độ giao điểm $2{x^2} = 2x + m \Leftrightarrow 2{x^2} - 2x - m = 0$ có $\Delta ' = 1 + 2m$

Để đường thẳng $d:y = 2x + m$ không cắt  parabol  $\left( P \right):y = 2{x^2}$  thì $\Delta ' < 0 \Leftrightarrow 2m + 1 < 0 \Leftrightarrow m <  - \dfrac{1}{2}$

Đáp án : A