Đề bài

Với \(k,n \in N,2 \le k \le n\) thì giá trị của biểu thức $A = C_n^k + 4C_n^{k - 1} + 6C_n^{k - 2} + 4C_n^{k - 3} + C_n^{k - 4} - C_{n + 4}^k + 1$ bằng?

  • A.

    $A = 0$

  • B.

    $A = 1$

  • C.

    $A = 3$

  • D.

    $A =  - 1$

Phương pháp giải

Đối với những bài toán tổng những tổ hợp có chỉ số trên và chỉ số dưới là những số tự nhiên liên tiếp ta sử dụng công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)

Lời giải của GV Loigiaihay.com

Trước hết ta chứng minh công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)

\(\begin{array}{l}VT = C_n^k + C_n^{k + 1}\\ = \dfrac{{n!}}{{k!\left( {n - k} \right)!}} + \dfrac{{n!}}{{\left( {k + 1} \right)!\left( {n - k - 1} \right)!}}\\ = \dfrac{{n!}}{{k!\left( {n - k - 1} \right)!}}\left( {\dfrac{1}{{n - k}} + \dfrac{1}{{k + 1}}} \right)\\ = \dfrac{{n!}}{{k!\left( {n - k - 1} \right)!}}.\dfrac{{k + 1 + n - k}}{{\left( {n - k} \right)\left( {k + 1} \right)}}\\ = \dfrac{{n!\left( {n + 1} \right)}}{{k!\left( {k + 1} \right)\left( {n - k - 1} \right)!\left( {n - k} \right)}}\\ = \dfrac{{\left( {n + 1} \right)!}}{{\left( {k + 1} \right)!\left( {n - k} \right)!}} = C_{n + 1}^{k + 1} = VP\end{array}\)

Ta tính giá trị của biểu thức B sau đây:

$\begin{array}{l}B = C_n^k + 4C_n^{k - 1} + 6C_n^{k - 2} + 4C_n^{k - 3} + C_n^{k - 4}\\\,\,\,\,\, = C_n^k + C_n^{k - 1} + 3\left( {C_n^{k - 1} + C_n^{k - 2}} \right) + 3\left( {C_n^{k - 2} + C_n^{k - 3}} \right) + C_n^{k - 3} + C_n^{k - 4}\\\,\,\,\,\, = C_{n + 1}^k + 3C_{n + 1}^{k - 1} + 3C_{n + 1}^{k - 2} + C_{n + 1}^{k - 3}\\\,\,\,\,\, = C_{n + 1}^k + C_{n + 1}^{k - 1} + 2\left( {C_{n + 1}^{k - 1} + C_{n + 1}^{k - 2}} \right) + C_{n + 1}^{k - 2} + C_{n + 1}^{k - 3}\\\,\,\,\,\, = C_{n + 2}^k + 2C_{n + 2}^{k - 1} + C_{n + 2}^{k - 2}\\\,\,\,\,\, = C_{n + 1}^k + C_{n + 1}^{k - 1} + C_{n + 1}^{k - 1} + C_{n + 1}^{k - 2}\\\,\,\,\,\, = C_{n + 3}^k + C_{n + 3}^{k - 1}\\\,\,\,\,\, = C_{n + 4}^k\\ \Rightarrow A = B - C_{n + 4}^k + 1 = C_{n + 4}^k - C_{n + 4}^k + 1 = 1\end{array}$

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Với \(\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!}} = 72\) thì giá trị của $n$ là:

Xem lời giải >>
Bài 2 :

Cho đa giác đều \(n\) đỉnh, \(n \in \mathbb{N}\) và \(n \ge 3\). Tìm \(n\) biết rằng đa giác đã cho có \(135\) đường chéo

Xem lời giải >>
Bài 3 :

Với $n$ thỏa mãn đẳng thức \(\dfrac{{A_n^4}}{{A_{n + 1}^3 - C_n^{n - 4}}} = \dfrac{{24}}{{23}}\) thì giá trị của biểu thức \(P = {\left( {n + 1} \right)^2} - 3n + 5\) là:

Xem lời giải >>
Bài 4 :

Với giá trị của $x$ thỏa mãn \(12C_x^1 + C_{x + 4}^2 = 162\) thì \(A_{x - 1}^2 - C_x^1 = ?\)

Xem lời giải >>
Bài 5 :

Tổng giá trị của $x$ thỏa mãn phương trình \(C_x^1 + C_x^2 + C_x^3 = \dfrac{7}{2}x\) là

Xem lời giải >>
Bài 6 :

Có bao nhiêu giá trị của $x$ thỏa mãn phương trình \(\dfrac{1}{{C_x^1}} - \dfrac{1}{{C_{x + 1}^2}} = \dfrac{7}{{6C_{x + 4}^1}}\):

Xem lời giải >>
Bài 7 :

Tích các giá trị $x$ nguyên thỏa mãn bất phương trình \(\dfrac{1}{2}A_{2x}^2 - A_x^2 \le \dfrac{6}{x}C_x^3 + 10\) là:

Xem lời giải >>
Bài 8 :

Hệ phương trình \(\left\{ \begin{array}{l}C_x^y - C_x^{y + 1} = 0\\4C_x^y - 5C_x^{y - 1} = 0\end{array} \right.\) có bao nhiêu nghiệm?

Xem lời giải >>
Bài 9 :

Bất phương trình \(2C_{x + 1}^2 + 3A_x^2 < 30\) không tương đương với bất phương trình nào sau đây?

Xem lời giải >>
Bài 10 :

Với $n$ thỏa mãn \(A_n^3 + 5A_n^2 = 2\left( {n + 15} \right)\) thì:

Xem lời giải >>
Bài 11 :

Cho phương trình \(A_x^3 + 2C_{x + 1}^{x - 1} - 3C_{x - 1}^{x - 3} = 3{x^2} + {P_6} + 159\). Giả sử \(x = {x_0}\) là nghiệm của phương trình trên, lúc này ta có:

Xem lời giải >>
Bài 12 :

Có bao nhiêu số tự nhiên $k$ thỏa mãn hệ thức: \(C_{14}^k + C_{14}^{k + 2} = 2C_{14}^{k + 1}\) 

Xem lời giải >>
Bài 13 :

Giải hệ phương trình \(\left\{ \begin{array}{l}2A_x^y + 5C_x^y = 90\\5A_x^y - 2C_x^y = 80\end{array} \right.\) ta được nghiệm \(\left( {x;y} \right)\) thì $xy$ bằng :

Xem lời giải >>
Bài 14 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}C_y^x:C_{y + 2}^x = \dfrac{1}{3}\\C_y^x:A_y^x = \dfrac{1}{{24}}\end{array} \right.\) là:

Xem lời giải >>
Bài 15 :

Giá trị của biểu thức \(A_{n + k}^{n + 1} + A_{n + k}^{n + 2}\) bằng biểu thức nào sau đây?

Xem lời giải >>
Bài 16 :

Có bao nhiêu giá trị của $n$ thỏa mãn bất đẳng thức: \(C_{n - 1}^4 - C_{n - 1}^3 - \dfrac{5}{4}A_{n - 2}^2 < 0\,\,\left( {n \in N} \right)\)?

Xem lời giải >>
Bài 17 :

Với $x,y$ thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}A_x^2 + C_y^3 = 22\\A_y^3 + C_x^2 = 66\end{array} \right.\,\,\,\left( {x,y \in N} \right)\) thì \(x - y\) bằng?

Xem lời giải >>
Bài 18 :

Cho \(C_{x + 1}^y:C_x^{y + 1}:C_x^{y - 1} = 6:5:2\). Khi đó tổng $x + y$ bằng:

Xem lời giải >>
Bài 19 :

Biểu thức \(2C_n^k + 5C_n^{k + 1} + 4C_n^{k + 2}+C_n^{k+3}\) bằng biểu thức nào sau đây?

Xem lời giải >>
Bài 20 :

Số (5! – P4) bằng: 

Xem lời giải >>