Đề bài

Cho tam giác $ABC$ có đường thẳng $BC:y =  - \dfrac{1}{3}x + 1$ và $A\left( {1,2} \right)$ . Viết phương trình đường cao $AH$ của tam giác $ABC$ .

  • A.

    $y = 3x - \dfrac{2}{3}$         

  • B.

    $y = 3{\rm{x}} + \dfrac{2}{3}$        

  • C.

    $y = 3{\rm{x}} + 2$

  • D.

    Đáp án khác

Phương pháp giải

Sử dụng kiến thức

- $d \bot d' \Leftrightarrow a.a' =  - 1$

- Điểm $M(x_0;y_0)$ thuộc đường thẳng $d:y=ax+b$ khi $y_0=ax_0+b.$

Lời giải của GV Loigiaihay.com

Giả sử $AH:y = {\rm{ax}} + b$

Vì $AH$ là đường cao của tam giác $ABC$ nên $AH$ vuông góc với $BC$ nên: $a.\dfrac{{ - 1}}{3} =  - 1 \Leftrightarrow a = 3$

Mặt khác $AH$ đi qua $A\left( {1;2} \right)$ nên ta có: $3.1 + b = 2 \Leftrightarrow b =  - 1$

Vậy $AH:y = 3x - 1$.

Đáp án : D

Chú ý

Học sinh không phát hiện ra đường cao $AH$ sẽ vuông góc với $BC$. Từ đó không làm được bài.

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...