Cho đường thẳng $d:y = ({m^2} - 2m + 2)x + 4$. Tìm $m$ để $d$ cắt $Ox$ tại $A$ và cắt $Oy$ tại $B$ sao cho diện tích tam giác $AOB$ lớn nhất.
-
A.
$m = 1$
-
B.
$m = 0$
-
C.
$m = - 1$
-
D.
$m=-2$
Tìm tọa độ giao điểm của đường thẳng và 2 trục tọa độ.
Biện luận và giải phương trình.
$\begin{array}{l}d \cap Oy = \left\{ B \right\}\\x = 0 \Rightarrow y = 4 \Rightarrow B(0;4) \Rightarrow OB = |4| = 4\\d \cap {\rm{Ox}} = \left\{ A \right\}\\y = 0 \Leftrightarrow ({m^2} - 2m + 2)x + 4 = 0 \Leftrightarrow x = \dfrac{{ - 4}}{{{m^2} - 2m + 2}}\\ \Rightarrow A\left( {\dfrac{{ - 4}}{{{m^2} - 2m + 2}};0} \right) \Rightarrow OA = \left| {\dfrac{{ - 4}}{{{m^2} - 2m + 2}}} \right|\end{array}$
\( \Rightarrow OA = \dfrac{4}{{{m^2} - 2m + 2}}\)
(vì ${m^2} - 2m + 2 = {(m - 1)^2} + 1 \ge 1\begin{array}{*{20}{c}}{}&{\forall m}\end{array}$)
${S_{\Delta AOB}} = \dfrac{1}{2}OA.OB = \dfrac{1}{2}.4.\dfrac{4}{{{m^2} - 2m + 2}} = \dfrac{8}{{{{(m - 1)}^2} + 1}}$
Hay ${S_{\Delta AOB}} = \dfrac{8}{{{{(m - 1)}^2} + 1}} \le \dfrac{8}{1} = 8$
Dấu “=” xảy ra khi $m - 1 = 0 \Leftrightarrow m = 1$.
Đáp án : A
Các bài tập cùng chuyên đề
Cho $2$ đường thẳng $d:y = x + 3;d':y = \dfrac{{ - 2}}{3}x + \dfrac{4}{3}$. Gọi $M$ là giao điểm của $d$ và $d'$ . $A$ và $C$ lần lượt là giao điểm của $d$ và $d'$ với trục hoành; $B$ và $D$ lần lượt là giao điểm của $d$ và $d'$ với trục tung. Khi đó diện tích tam giác $CMB$ là:
Tìm $m$ để đường thẳng $d:y = mx + 1$ cắt đường thẳng $d':y = 2x - 1$ tại $1$ điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$.
Có bao nhiêu giá trị nguyên của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:
Cho tam giác $ABC$ có đường thẳng $BC:y = - \dfrac{1}{3}x + 1$ và $A\left( {1,2} \right)$ . Viết phương trình đường cao $AH$ của tam giác $ABC$ .
Điểm cố định mà đường thẳng $d:y = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}x + \sqrt k + 3 \, (k \ge 0)$ luôn đi qua là:
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là:
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( {1;1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Viết phương trình đường trung trực của đoạn thẳng $AB$.
Cho $2$ đường thẳng: $d:y = x + 3;d':y = \dfrac{{ - 2}}{3}x + \dfrac{4}{3}$. Gọi $M$ là giao điểm của $d$ và $d'$ . $A$ và $C$ lần lượt là giao điểm của $d$ và $d'$ với trục hoành; $B$ và $D$ lần lượt là giao điểm của $d$ và $d'$ với trục tung. Khi đó diện tích tam giác $CMB$ là:
Tìm $m$ để đường thẳng $d:y = mx + 1$ cắt đường thẳng $d':y = 2x - 1$ tại $1$ điểm thuộc đường phân giác góc phần tư thứ $II$ và thứ $IV$.
Giá trị nguyên có thể có của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.
Cho $M\left( {0;2} \right),N\left( {1;0} \right),P\left( { - 1; - 1} \right)$ lần lượt là trung điểm của các cạnh $BC,CA$ và $AB$ của tam giác $ABC$ . Phương trình đường thẳng $AB$ của tam giác $ABC$ là: