Đề bài
Có bao nhiêu giá trị nguyên của $m$ để $2$ đường thẳng $d:y = mx - 2;d':y = 2x + 1$ cắt nhau tại điểm có hoành độ là số nguyên.
-
A.
$1$
-
B.
$3$
-
C.
$2$
-
D.
$4$
Phương pháp giải
- Điều kiện để 2 đường thẳng cắt nhau
- Tìm tọa độ giao điểm 2 đường thẳng
- Tìm nghiệm nguyên
Lời giải của GV Loigiaihay.com
Ta có: $d \cap d' \Leftrightarrow m \ne 2$.
Xét phương trình hoành độ giao điểm của $d$ và $d'$ : $mx - 2 = 2x + 1 \Leftrightarrow (m - 2)x = 3 \Leftrightarrow x = \dfrac{3}{{m - 2}}$
Ta có $x = \dfrac{3}{{m - 2}} \in Z \Leftrightarrow m - 2 \in U(3) = \left\{ { \pm 1; \pm 3} \right\}$
Ta có bảng sau:
Vậy $m \in \left\{ { - 1;1;3;5} \right\}$.
Đáp án : D




Danh sách bình luận