Đề bài

Tìm giá trị của tham số m để:

a) \(f\left( x \right) = \left( {2m - 8} \right){x^2} + 2mx + 1\) là một tam thức bậc hai.

b) \(f\left( x \right) = \left( {2m + 3} \right){x^2} + 3x - 4{m^2}\) là một tam thức bậc hai có \(x = 3\) là một nghiệm.

c) \(f\left( x \right) = 2{x^2} + mx - 3\) dương tại \(x = 2\).

Phương pháp giải

a) Sử dụng định nghĩa tam thức bậc hai.

b) Sử dụng định nghĩa tam thức bậc hai.

Thay x = 3 vào phương trình và tìm m.

c) Thay x = 2 vào phương trình rồi tìm m để f(2) > 0.

Lời giải của GV Loigiaihay.com

a) f(x) là tam thức bậc hai khi và chỉ khi  \(2m - 8 \ne 0 \Leftrightarrow m \ne 4\)

Vậy để \(f\left( x \right)\) là tam thức bậc hai thì \(m \ne 4\)

b) f(x) là tam thức bậc hai khi và chỉ khi  \(2m + 3 \ne 0 \Leftrightarrow m \ne  - \frac{3}{2}\)

Mặt khác, \(x = 3\) là nghiệm của f(x) khi và chỉ khi \(f\left( 3 \right) = 0\)

hay \(f\left( 3 \right) = \left( {2m + 3} \right){.3^2} + 3.3 - 4{m^2} = 0 \Leftrightarrow  - 4{m^2} + 18m + 36 = 0\)

Suy ra \(m =  - \frac{3}{2}\) hoặc \(m = 6\)

Vậy để \(f\left( x \right)\) là tam thức bậc hai và có nghiệm là \(x = 3\) thì \(m = 6\)

c) Hàm số f(x) có \(a = 2 \ne 0\) nên là tam thức bậc hai

\(f\left( x \right) = 2{x^2} + mx - 3\) dương tại \(x = 2\) khi và chỉ khi \(f\left( 2 \right) > 0\)

hay \(f\left( 2 \right) = {2.2^2} + 2m - 3 > 0 \Leftrightarrow m >  - \frac{5}{2}\)

Vậy để \(f\left( x \right)\) dương tại \(x = 2\) thì \(m >  - \frac{5}{2}\)

Các bài tập cùng chuyên đề

Bài 1 :

Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệm tính toán lợi nhuận y (đồng) theo công thức sau: \(y =  - 200{x^2} + 92\;000x - 8\;400\;000\), trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của \(y =  - 200{x^2} + 92\;000x - 8\;400\;000\), tức là ta cần xét dấu của tam thức bậc hai \(f(x) =  - 200{x^2} + 92000x - 8400000.\)

Làm thế nào để xét dấu của tam thức bậc hai?

Xem lời giải >>
Bài 2 :
Biểu thức nào sau đây là tam thức bậc hai?
Xem lời giải >>
Bài 3 :

Biệt thức ∆ của tam thức bậc hai \(f(x) =  - {x^2} - 4x + 5\) bằng

Xem lời giải >>
Bài 4 :

Hãy cho biết biểu thức nào sau đây là tam thức bậc hai.

\(A = 3x + 2\sqrt x  + 1\) 

\(B =  - 5{x^4} - 3{x^2} + 4\)

\(C =  - \frac{2}{3}{x^2} + 7x - 4\)

\(D = {\left( {\frac{1}{x}} \right)^2} + 2.\frac{1}{x} + 3\)

Xem lời giải >>
Bài 5 :

Hãy chỉ ra một đặc điểm chung của các biểu thức dưới đây:

\(A = 0,5{x^2}\)    

\(B = 1 - {x^2}\)   

\(C = {x^2} + x + 1\)     

\(D = (1 - x)(2x + 1)\)

Xem lời giải >>
Bài 6 :

Tìm biệt thức và nghiệm của các tam thức bậc hai sau:

a) \(f\left( x \right) = 2{x^2} - 5x + 2\)

b) \(g\left( x \right) =  - {x^2} + 6x - 9\)

c) \(h\left( x \right) = 4{x^2} - 4x + 9\)

Xem lời giải >>
Bài 7 :

Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại \(x = 1\).

a) \(f\left( x \right) = 2{x^2} + x - 1\);

b) \(g\left( x \right) =  - {x^4} + 2{x^2} + 1\)

c) \(h\left( x \right) =  - {x^2} + \sqrt 2 .x - 3\)

Xem lời giải >>
Bài 8 :

Đa thức nào sau đây là tam thức bậc hai?

a) \(4{x^2} + 3x + 1\)

b) \({x^3} + 3{x^2} - 1\)

c) \(2{x^2} + 4x - 1\)

Xem lời giải >>
Bài 9 :

Xác định giá trị của m để các đa thức sau là tam thức bậc hai

a) \(\left( {m + 1} \right){x^2} + 2x + m\)

b) \(m{x^3} + 2{x^2} - x + m\)

c) \( - 5{x^2} + 2x - m + 1\)

Xem lời giải >>
Bài 10 :

Tính biệt thức và nghiệm (nếu có) của tam thức bậc hai sau. Xác định dấu của chúng tại \(x =  - 2\).

a) \(f\left( x \right) =  - 2{x^2} + 3x - 4\).

b) \(g\left( x \right) = 2{x^2} + 8x + 8\).

c) \(h\left( x \right) = 3{x^2} + 7x - 10\).

Xem lời giải >>
Bài 11 :

Tìm các giá trị của tham số m để:

a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất.

b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt.

c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm.

Xem lời giải >>
Bài 12 :

Tam thức bậc hai nào có biệt thức \(\Delta  = 1\) và hai nghiệm là:\({x_1} = \frac{3}{2}\) và \({x_2} = \frac{7}{4}\)?

A. \(8{x^2} - 26x + 21\)                                

B. \(4{x^2} - 13x + \frac{{21}}{2}\)

C. \(4{x^2} + 4x - 15\)                                  

D. \(2{x^2} - 7x + 6\)

Xem lời giải >>
Bài 13 :

Trong trường hợp nào tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) có \(\Delta  > 0\) và \(a < 0\)?

Xem lời giải >>
Bài 14 :

Tìm khẳng định đúng trong các khẳng định sau?

Xem lời giải >>
Bài 15 :

Tìm tất cả các giá trị của tham số m để biểu thức \(f(x) = (m - 2){x^2} + 2x - 3\) là một tam thức bậc hai.

Xem lời giải >>