Đề bài

Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung trực của tam giác ABC.

Phương pháp giải

Chứng minh AD là đường trung trực của tam giác ABC ta chứng minh D là trung điểm của BC và \(AD \bot BC\)

Lời giải của GV Loigiaihay.com

AD là phân giác của góc A nên \(\widehat {BAD} = \widehat {CAD}\).

Xét tam giác ABD và tam giác ACD có:

     AB = AC (tam giác ABC cân tại A);

     \(\widehat {BAD} = \widehat {CAD}\);

     AD chung

Vậy \(\Delta ABD = \Delta ACD\)(c.g.c) nên \(BD = CD\) (2 cạnh tương ứng)

\(\Rightarrow\) D là trung điểm của cạnh BC.

Vì \(\Delta ABD = \Delta ACD\) nên \(\widehat {ADB} = \widehat {ADC}\) ( 2 góc tương ứng).

Mà \(\widehat {ADB} + \widehat {ADC}=180^0\) (2 góc kề bù) nên \(\widehat {ADB} = \widehat {ADC} = 90^\circ  \Rightarrow AD \bot BC\).

Vậy AD là đường trung trực của tam giác ABC.