Ở Hình 1, cho biết AE = AF và \(\widehat {ABC} = \widehat {ACB}\). Chứng minh AH là đường trung trực của BC.
Ta chứng minh A và H cùng thuộc đường trung trực của đoạn BC thông qua chứng minh chúng cách đều 2 đầu mút của đoạn BC.
Theo giả thiết ta có tam giác ABC cân tại A do có 2 góc đáy bằng nhau
\( \Rightarrow \)A cách đều 2 đều B, C
\( \Rightarrow \) A thuộc trung trực đoạn thẳng BC (1) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)
Xét \(\Delta \)AEC và \(\Delta \)AFB ta có :
AE = AF
Góc A chung
AC = AB
\( \Rightarrow \Delta AEC = \Delta AFB\)(c-g-c)
\( \Rightarrow \widehat {ECA} = \widehat {FBA}\)(góc tương ứng)
Ta có: \(\widehat {ABC} = \widehat {ABF} + \widehat {FBC}\)
\(\widehat {ACB} = \widehat {ACE} + \widehat {ECB}\)
Mà \(\widehat {ACB} = \widehat {ABC}\)(giả thiết) và \(\widehat {ECA} = \widehat {FBA}\)(chứng minh trên)
\( \Rightarrow \widehat {ECB} = \widehat {FBC}\)\( \Rightarrow \)\(\Delta \)HBC cân tại H do có 2 góc đáy bằng nhau
\( \Rightarrow \) H cách đều BC \( \Rightarrow \) H thuộc trung trực BC (2) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)
Từ (1) và (2) \( \Rightarrow \) AH là trung trực của BC
Các bài tập cùng chuyên đề
Mỗi tam giác có mấy đường trung trực
Cho tam giác ABC, em hãy dùng thước kẻ và compa vẽ đường trung trực xy của cạnh BC.
Hình 121 minh họa biển giới thiệu quần thể di tích, danh thắng cấp Quốc gia núi Dũng Quyết và khu vực Phượng Hoàng Trung Đô ở tỉnh Nghệ An (Hình 120).
Làm thế nào để xác định được vị trí cách đều ba địa điểm được minh họa trong Hình 121?
Cho tam giác ABC cân tại A. Vẽ đường phân giác AD. Chứng minh AD cũng là đường trung trực của tam giác ABC.