Đề bài

Tìm \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 + 3 + 5 + ... + \left( {2n - 1} \right)}}{{{n^2} + 2n}}\).

Phương pháp giải

Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Lời giải của GV Loigiaihay.com

\(\mathop {\lim }\limits_{n \to  + \infty } \frac{{1 + 3 + 5 + ... + \left( {2n - 1} \right)}}{{{n^2} + 2n}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{{n^2}}}{{{n^2} + 2n}} = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{1 + \frac{2}{n}}} = 1\)

Các bài tập cùng chuyên đề

Bài 1 :

Tính \(\mathop {lim}\limits_{n \to  + \infty } \left( {n - \sqrt n } \right)\).

Xem lời giải >>
Bài 2 :

Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kỳ 4 giờ, số lượng của chúng sẽ tăng gấp đôi.

a) Dự đoán công thức tính số vi khuẩn \({u_n}\) sau chu kì thứ n

b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?

Xem lời giải >>
Bài 3 :

Tìm giới hạn của các dãy số cho bởi

a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\)                                        

b) \({v_n} = \sqrt {2{n^2} + 1}  - n\)

Xem lời giải >>
Bài 4 :

Quan sát dãy số \((u_n)\) với \(u_­n = n^2\) và cho biết giá trị của n có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.

 
Xem lời giải >>
Bài 5 :

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)

Xem lời giải >>
Bài 6 :

Tính \(\lim \left( { - {n^3}} \right).\)

Xem lời giải >>
Bài 7 :

Dựng một dãy hình vuông bằng cách ghép từ các hình vuông đơn vị (cạnh bằng 1 đơn vị độ dài) theo các bước như Hình 4. Kí hiệu \({u_n}\) (đơn vị diện tích) là diện tích hình vuông dựng được ở bước thứ \(n\).

a) Với \(n\) như thế nào thì \({u_n}\) vượt quá 10000; 1000000?

b) Cho hình có diện tích \(S\). Với \(n\) như thế nào thì \({u_n}\) vượt quá \(S\)?

Xem lời giải >>
Bài 8 :

Tìm các giới hạn sau:

a) \(\lim \left( {1 + 3n - {n^2}} \right)\);

b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\);

c) \(\lim \left( {\sqrt {{n^2} - n}  + n} \right)\);

d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\).

Xem lời giải >>
Bài 9 :

Phát biểu nào sau đây là SAI?

A. Nếu \(\lim {u_n} =  + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} =  + \infty \).

B. Nếu \(\lim {u_n} =  - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} =  + \infty \).

C. Nếu \(\lim {u_n} =  + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = 0\).

D. Nếu \(\lim {u_n} =  - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} =  - \infty \).

Xem lời giải >>
Bài 10 :

Nếu \(\lim {u_n} = C\) và \(\lim {v_n} =  + \infty \) (hoặc \(\lim {v_n} =  - \infty \)) thì \(\lim \frac{{{u_n}}}{{{v_n}}}\) bằng:

A. \(0\)                          

B. \( - \infty \)               

C. \( + \infty \)              

D. \( - \infty \) hoặc \( + \infty \)

Xem lời giải >>
Bài 11 :

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {\sqrt {{n^2} + 2n}  - n - 2} \right);\)     

b) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {2 + {n^2} - \sqrt {{n^4} + 1} } \right);\)

c) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {\sqrt {{n^2} - n + 2}  + n} \right);\)                     

d) \(\mathop {\lim }\limits_{n \to  + \infty } \left( {3n - \sqrt {4{n^2} + 1} } \right).\)

Xem lời giải >>
Bài 12 :

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\cos n}}{{{n^2}}}.\) Tìm \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}\).

Xem lời giải >>