Quan sát dãy số \((u_n)\) với \(u_n = n^2\) và cho biết giá trị của n có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.
Xác định các giá trị của dãy số dựa vào công thức tính số hạng tổng quát.
Ta có bảng giá trị sau:
n |
1 |
2 |
3 |
... |
100 |
... |
1001 |
\(u_n\) |
1 |
4 |
9 |
... |
10 000 |
... |
1 002 001 |
Từ đó ta có các nhận xét sau:
+) Kể từ số hạng thứ 2 trở đi thì \(u_n > 1\) .
+) Kể từ số hạng thứ 101 trở đi thì \(u_n > 10 000\).
...
Vậy ta thấy \(u_n\) có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.
Các bài tập cùng chuyên đề
Tính \(\mathop {lim}\limits_{n \to + \infty } \left( {n - \sqrt n } \right)\).
Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kỳ 4 giờ, số lượng của chúng sẽ tăng gấp đôi.
a) Dự đoán công thức tính số vi khuẩn \({u_n}\) sau chu kì thứ n
b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?
Tìm giới hạn của các dãy số cho bởi
a) \({u_n} = \frac{{{n^2} + 1}}{{2n - 1}}\)
b) \({v_n} = \sqrt {2{n^2} + 1} - n\)
Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)
Tính \(\lim \left( { - {n^3}} \right).\)
Dựng một dãy hình vuông bằng cách ghép từ các hình vuông đơn vị (cạnh bằng 1 đơn vị độ dài) theo các bước như Hình 4. Kí hiệu \({u_n}\) (đơn vị diện tích) là diện tích hình vuông dựng được ở bước thứ \(n\).
a) Với \(n\) như thế nào thì \({u_n}\) vượt quá 10000; 1000000?
b) Cho hình có diện tích \(S\). Với \(n\) như thế nào thì \({u_n}\) vượt quá \(S\)?
Tìm các giới hạn sau:
a) \(\lim \left( {1 + 3n - {n^2}} \right)\);
b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\);
c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right)\);
d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\).
Phát biểu nào sau đây là SAI?
A. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
B. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
C. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = 0\).
D. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \).
Nếu \(\lim {u_n} = C\) và \(\lim {v_n} = + \infty \) (hoặc \(\lim {v_n} = - \infty \)) thì \(\lim \frac{{{u_n}}}{{{v_n}}}\) bằng:
A. \(0\)
B. \( - \infty \)
C. \( + \infty \)
D. \( - \infty \) hoặc \( + \infty \)
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n - 2} \right);\)
b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {2 + {n^2} - \sqrt {{n^4} + 1} } \right);\)
c) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} - n + 2} + n} \right);\)
d) \(\mathop {\lim }\limits_{n \to + \infty } \left( {3n - \sqrt {4{n^2} + 1} } \right).\)
Tìm \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 + 3 + 5 + ... + \left( {2n - 1} \right)}}{{{n^2} + 2n}}\).
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\cos n}}{{{n^2}}}.\) Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\).