Tìm số tự nhiên \(n\) để \({n^3} - {n^2} + n - 1\) là số nguyên tố.
Áp dụng các phương pháp phân tích đa thức thành nhân tử để tìm số tự nhiên \(n\) là số nguyên tố.
Ta có:
\({n^3} - {n^2} + n - 1 = \left( {{n^3} - {n^2}} \right) + \left( {n - 1} \right) = {n^2}\left( {n - 1} \right) + \left( {n - 1} \right) = \left( {{n^2} + 1} \right)\left( {n - 1} \right)\)
Với mọi số tự nhiên \(n\), ta có: \(n - 1 < {n^2} + 1\). Do đó, để \({n^3} - {n^2} + n - 1\) là số nguyên tố thì \(n - 1 = 1\). Suy ra \(n = 2\). Khi đó \({n^3} - {n^2} + n - 1 = 5\) là số nguyên tố.
Vậy \(n = 2\) thỏa mãn yêu cầu của đề bài.
Các bài tập cùng chuyên đề
Phân tích đa thức \(2{x^2} - 4xy + 2y - x\) thành nhân tử.
Tính nhanh giá trị của biểu thức
\(A = {x^2} + 2y - 2x - xy\) tại \(x = 2022,y = 2020\)
Đa thức \({x^2} - 9x + 8\) được phân tích thành tích của hai đa thức
A. \(x - 1\) và \(x + 8\)
B. \(x - 1\) và \(x - 8\)
C. \(x - 2\) và \(x - 4\)
D. \(x - 2\) và \(x + 4\)
Phân tích các đa thức sau thành nhân tử:
a) \(8{x^3} - 1\)
b) \({x^3} + 27{y^3}\)
c) \({x^3} - {y^6}\)
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - xy + x - y\)
b) \({x^2} + 2xy - 4x - 8y\)
c) \({x^3} - {x^2} - x + 1\)
Cho đa thức: \({x^2} - 2{\rm{x}}y + {y^2} + x - y\)
a) Nhóm ba số hạng đầu và sử dụng hằng đẳng thức để viết nhóm đó thành tích
b) Phân tích đa thức trên thành nhân tử
Phân tích mỗi đa thức sau thành nhân tử:
\(a){x^2} - 25 - 4{\rm{x}}y + 4{y^2}\) \(b){x^3} - {y^3} + {x^2}y - x{y^2}\) \(c){x^4} - {y^4} + {x^3}y - x{y^3}\)
Tính giá trị của mỗi biểu thức sau:
a) \(A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\) biết \({x^2} - y = 6\)
b) \(B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\) biết xy + z = 0.
Cho đa thức \({x^2} - 6x + 2xy - 12y.\)
- Các hạng tử của đa thức trên có nhân tử chung không?
- Viết \({x^2} - 6x + 2xy - 12y = \left( {{x^2} - 6x} \right) + \left( {2xy - 12y} \right)\) rồi phân tích mỗi đa thức trong ngoặc thành nhân tử. Từ đó phân tích đa thức \({x^2} - 6x + 2xy - 12y\) thành nhân tử.
Phân tích đa thức sau thành nhân tử: \(2{x^2}y + {x^2}z - 2{y^2} - yz\).
Tính nhanh: \(91.122,5 - 91.17,5 + 122,5.9 - 17,5.9\).
Phân tích đa thức sau thành nhân tử: \({x^2} + {x^3} - {y^2} - {y^3}\)
Phân tích các đa thức sau thành nhân tử:
a) \(x + 2x\left( {x - y} \right) - y\);
b) \({x^2} + xy - 3x - 3y\);
c) \(xy - 5y + 4x - 20\);
d) \(5xy - 25{x^2} + 50x - 10y\).
Tính giá trị của biểu thức:
a) \(P = 7\left( {a - 4} \right) - b\left( {4 - a} \right)\) tại \(a = 17\) và \(b = 3\);
b) \(Q = {a^2} + 2ab - 5a - 10b\) tại \(a = 1,2\) và \(b = 4,4\).
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} - 4{b^2} - a - b\);
b) \(9{a^2} - 4{b^2} + 4b - 1\);
c) \(4{x^3} - {y^3} + 4{x^2}y - x{y^2}\);
d) \({a^3} - {b^3} + 4ab + 4{a^2} + 4{b^2}\).
Phân tích đa thức \(5x - 5y + ax - ay\) thành nhân tử, ta nhận được
A. \(\left( {5 + a} \right)\left( {x - y} \right)\)
B. \(\left( {5 - a} \right)\left( {x + y} \right)\)
C. \(\left( {5 + a} \right)\left( {x + y} \right)\)
D. \(5\left( {x - y + a} \right)\)
Đa thức \({x^2} - 3xy + 2{y^2}\) được phân tích thành tích của hai đa thức:
A. x + 2y và x – y.
B. x – 2y và x + y.
C. x + 2y và x + y.
D. x – 2y và x – y.
Đa thức \({x^2} + 5x + 6\) được phân tích thành tích của hai đa thức:
A. x + 2 và x – 3.
B. x – 2 và x – 3.
C. x + 2 và x + 3.
D. x – 2 và x + 3.
Đa thức \({x^2} - 9x + 8\) được phân tích thành tích của hai đa thức
A. x – 1 và x + 8.
B. x – 1 và x – 8.
C. x – 2 và x – 4.
D. x – 2 và x + 4.
Phân tích các đa thức sau thành nhân tử:
a) \(2{x^2}\;-3x + 1\).
b) \(3{x^2}\; + 4x + 1\).
Phân tích đa thức \( 5{x^2} - 4x + 10xy - 8y\) thành nhân tử ta được
Cho đa thức: \(f(x) = {x^2} - 15{\rm{x}} + 56\)
a) Phân tích đa thức thành nhân tử.
b) Tìm x sao cho f(x) = 0