Đề bài

Sử dụng máy tính cầm tay để giải các phương trình sau:

\(\begin{array}{*{20}{l}}{a){\rm{ }}cosx{\rm{ }} = {\rm{ }}0,4;}\\{b){\rm{ }}tanx{\rm{ }} = \;\sqrt 3 .}\end{array}\)

Phương pháp giải

+ Nếu \(\left| m \right| \le 1\) thì phương trình có nghiệm:

Khi \(\left| m \right| \le 1\)sẽ tồn tại duy nhất \(\alpha  \in \left[ {0;\pi } \right]\) thoả mãn \({\rm{cos}}\alpha  = m\). Khi đó:

\({\rm{cosx}} = m \Leftrightarrow {\rm{cosx}} = {\rm{cos}}\alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  - \alpha  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

+ Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha  \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha  = m\). Khi đó:

\(\tan {\rm{x}} = m \Leftrightarrow \tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi ,k \in \mathbb{Z}.\)

Lời giải của GV Loigiaihay.com

a) Sử dụng máy tính cầm tay ta có: \(cos1,16 \approx 0,4\)nên \(cosx = cos1,16\) do đó các nghiệm của phương trình là \(x = 1,16 + k2\pi \) hoặc \(x = -1,16 + k2\pi \)với \(k\; \in \;\mathbb{Z}\).

Vậy tập nghiệm của phương trình là \(S = \{ 1,16 + k2\pi ;-1,16 + k2\pi ,k\; \in \;\mathbb{Z}\} \).

b) Sử dụng máy tính cầm tay ta có: \(tanx{\rm{ }} = \;\sqrt 3 \) nên \(tanx = \;tan\frac{\pi }{3} \Leftrightarrow x = \;\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là \(S = \;\left\{ {\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}} \right\}.\)

Các bài tập cùng chuyên đề

Bài 1 :

Sử dụng máy tính cầm tay, tìm số đo độ và radian của góc \(\alpha \), biết:

a) \(\cos \alpha  =  - 0,75\)                 

b) \(\tan \alpha  = 2,46\)                    

c) \(\cot \alpha  =  - 6,18\)

Xem lời giải >>
Bài 2 :

Sử dụng MTCT để giải mỗi phương trình sau với kết quả là radian ( làm tròn kết quả đến hàng phần nghìn)

a) \(\sin x = 0,2\)

b) \(\cos x =  - \frac{1}{5}\)

c) \(\tan x = \sqrt 2 \)

Xem lời giải >>
Bài 3 :

Quay lại bài toán khởi động, phương trình chuyển động của bóng đầu trục bàn đạp là \(x = 17cos5\pi t\,\;\left( {cm} \right)\) với t được đo bằng giây. Xác định các thời điểm t mà tại đó độ dài bóng \(|x|\;\) vừa bằng 10. Làm tròn kết quả đến hàng phần mười

Xem lời giải >>