Kết quả điểm môn Toán của Bích trong học kì 1 như sau:
Điểm đánh giá thường xuyên: 6; 8; 8; 9;
Điểm đánh giá giữa kì: 7;
Điểm đánh giá cuối kì: 10.
Hãy tính điểm trung bình môn Toán của Bích và làm tròn đến hàng phần mười.
Điểm trung bình môn = (Tổng điểm đánh giá thường xuyên + Điểm đánh giá giữa kì .2 + Điểm đánh giá cuối kì.3):9
Điểm trung bình môn Toán của Bích là: \(\frac{{6+8+8+9 + 7.2 + 10.3}}{9} = 8,(3) \approx 8,3\).
Các bài tập cùng chuyên đề
Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân: \(\frac{{12}}{{25}};\frac{{27}}{2};\frac{{10}}{9}\)
Hãy so sánh hai số hữu tỉ: \(0,834\) và \(\frac{5}{6}\).
Hãy thực hiện các phép chia sau đây:
\(3:2 = ?\,\,\,\,\,\,\,\,\,\,\,37:25 = ?\,\,\,\,\,\,\,\,5:3 = ?\,\,\,\,\,\,1:9 = ?\)
b) Dùng kết quả trên để viết các số \(\frac{3}{2};\frac{{37}}{{25}};\frac{5}{3};\frac{1}{9}\) dưới dạng số thập phân.
a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân:
\(\frac{{15}}{8};\,\,\,\frac{{ - 99}}{{20}};\,\,\,\frac{{40}}{9};\,\,\, - \frac{{44}}{7}\)
b) Trong các số thập phân vừa tính được, hãy chỉ ra các số thập phân vô hạn tuần hoàn.
Viết các phân số sau dưới dạng số thập phân:
a) \(\frac{5}{{16}};\,\,\,\, - \frac{7}{{50}};\,\,\,\,\frac{{11}}{{40}};\,\,\,\,\frac{9}{{200}}.\)
b) \(\frac{1}{7};\,\,\,\frac{1}{{11}};\,\,\,\,\frac{3}{{13}};\,\,\, - \frac{5}{{12}}\).
Viết mỗi số thập phân hữu hạn sau đây dưới dạng phân số tối giản:
a) 6,5 b) -1,28 c) -0,124
Số thập phân 0,35 được viết dưới dạng phân số tối giản thì tổng tử và mẫu bằng bao nhiêu?
Trong bốn số \(\frac{{13}}{8};\frac{{ - 135}}{{18}};\frac{{35}}{{147}};\frac{{132}}{{55}}\), số không viết được dưới dạng số thập phân hữu hạn là
A. \(\frac{{13}}{8}\)
B. \(\frac{{ - 135}}{{18}}\)
C. \(\frac{{35}}{{147}}\)
D. \(\frac{{132}}{{55}}\).
a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân.
\( - \dfrac{7}{4}\);\(\dfrac{{33}}{{10}}\);\(\dfrac{{ - 124}}{3}\);\(\dfrac{{12}}{{25}}\)
b) Trong các số thập phân trên hãy chỉ ra các số thập phân vô hạn tuần hoàn.
Hãy biểu diễn các số thập phân sau dưới dạng số hữu tỉ: 7,2; 0,25; 7,(2)
Tìm số hữu tỉ trong các số sau:
5,3; \(\sqrt {\dfrac{1}{9}} \);\(\sqrt {99} \);2,(11); 0,456; \(\sqrt {1,21} \)
Phân số biểu diễn số hữu tỉ \( - 0,625\)
So sánh \(a = 0,\left( {12} \right)\) và \(b = 0,1\left( {21} \right)\)
Viết số \(0,1\left( {235} \right)\) dưới dạng phân số.
Hãy biểu diễn các số thập phân sau đây dưới dạng số hữu tỉ: 12,3; 0,12; 5(3).
Viết \(\frac{5}{9}\) và \(\frac{5}{{99}}\) dưới dạng số thập phân vô hạn tuần hoàn.
Chứng tỏ rằng
a) 0,123 + 0,876 = 1
b) 0,123.3 + 0,630 = 1
Viết số thập phân hữu hạn sau đây dưới dạng phân số tối giản: 0,32