Đề bài

Với giá trị nào của \(m\) thì hai đường thẳng sau đây vuông góc \(\left( {{\Delta _1}} \right):\left\{ \begin{array}{l}x = 1 + \left( {{m^2} + 1} \right)t\\y = 2 - mt\end{array} \right.\) và \(\left( {{\Delta _2}} \right):\left\{ \begin{array}{l}x = 2 - 3t'\\y = 1 - 4mt'\end{array} \right.\)

  • A.

    \(m =  \pm \sqrt 3 \)    

  • B.

    \(m =  - \sqrt 3 \)

  • C.

    \(m = \sqrt 3 \)

  • D.

    không có \(m\)

Phương pháp giải

Hai đường thẳng vuông góc với nhau nếu và chỉ nếu hai véc tơ pháp tuyến (véc tơ chỉ phương) của chúng vuông góc.

Lời giải của GV Loigiaihay.com

\(\left( {{\Delta _1}} \right)\) có \(\overrightarrow {{u_1}}  = \left( {{m^2} + 1; - m} \right)\); \(\left( {{\Delta _2}} \right)\) có \(\overrightarrow {{u_2}}  = \left( { - 3; - 4m} \right)\)

 \(\left( {{\Delta _1}} \right) \bot \left( {{\Delta _2}} \right) \Leftrightarrow \overrightarrow {{u_1}}  \bot \overrightarrow {{u_2}}  \Leftrightarrow  - 3\left( {{m^2} + 1} \right) + 4{m^2} = 0 \Leftrightarrow {m^2} = 3 \Leftrightarrow m =  \pm \sqrt 3 \)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho phương trình: \(ax + by + c = 0\;\left( 1 \right)\) với \({a^2} + {b^2} > 0\). Mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 2 :

Mệnh đề nào sau đây sai? Đường thẳng \(\left( d \right)\) được xác định khi biết.

Xem lời giải >>
Bài 3 :

Cho tam giác \(ABC\). Hỏi mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 4 :

Tìm một vectơ chỉ phương của đường thẳng \(d:\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 3 - 5t\end{array} \right.\).

Xem lời giải >>
Bài 5 :

Cho đường thẳng \(\left( d \right):2x + 3y - 4 = 0\). Vecto nào sau đây là vecto pháp tuyến của $\left( d \right)$ ?

Xem lời giải >>
Bài 6 :

Cho đường thẳng \(\left( d \right):3x - 7y + 15 = 0\). Mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 7 :

Cho $\left( d \right):\left\{ \begin{array}{l}x = 1 - t\\y = 3 + 2t\end{array} \right.$ điểm nào sau đây thuộc $d$?

Xem lời giải >>
Bài 8 :

Cho $2$ đường thẳng : ${d_1}:\left\{ \begin{array}{l}x =  - 1 + 3t\\y = 1 + 2t\end{array} \right.$ ;  ${d_2}:\dfrac{{x + 3}}{3} = \dfrac{y}{1}$. Toạ độ giao điểm của ${d_1}$ và ${d_2}$ là :

Xem lời giải >>
Bài 9 :

Cho hai đường thẳng \(\left( {{d_1}} \right):mx + y = m + 1\,\,,\left( {{d_2}} \right):x + my = 2\,\) cắt nhau khi và chỉ khi :

Xem lời giải >>
Bài 10 :

Đường thẳng \(\left( \Delta \right)\): \(3x - 2y - 7 = 0\) cắt đường thẳng nào sau đây?

Xem lời giải >>
Bài 11 :

Phương trình nào sau đây biểu diễn đường thẳng không song song với đường thẳng \(\left( d \right):\,y = 2x - 1\)?

Xem lời giải >>
Bài 12 :

Cho hai đường thẳng \(\left( {{d_1}} \right):mx + y = m + 1\,\,,\left( {{d_2}} \right):x + my = 2\,\)song song nhau khi và chỉ khi

Xem lời giải >>
Bài 13 :

Cho hai đường thẳng \(\left( {{\Delta _1}} \right):11x - 12y + 1 = 0\) và \(\left( {{\Delta _2}} \right):12x + 11y + 9 = 0\). Khi đó hai đường thẳng này 

Xem lời giải >>
Bài 14 :

Với giá trị nào của \(m\) thì hai đường thẳng \(\left( {{\Delta _1}} \right):3x + 4y - 1 = 0\) và \(\left( {{\Delta _2}} \right):\left( {2m - 1} \right)x + {m^2}y + 1 = 0\) trùng nhau.

Xem lời giải >>
Bài 15 : Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường thẳng \(\Delta :3x + y + 6 = 0\) và điểm \(M\left( {1;3} \right).\) Viết phương trình đường thẳng \(d\) biết \(d\) đi qua \(M\) và song song đường thẳng \(\Delta \).
Xem lời giải >>