Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip \(\left( E \right):\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\) có hai tiêu điểm \({F_1},{F_2}\). Biết rằng, điểm M là điểm có tung độ \({y_M}\) dương thuộc elip \(\left( E \right)\) sao cho bán kính đường tròn nội tiếp tam giác \(M{F_1}{F_2}\) bằng \(\dfrac{4}{3}\). Khẳng định nào sau đây đúng?
-
A.
\({y_M} \in \left( {0;\sqrt 3 } \right)\).
-
B.
\({y_M} \in \left( {2;\sqrt 8 } \right)\).
-
C.
\({y_M} \in \left( {\sqrt 8 ;5} \right)\).
-
D.
\({y_M} \in \left( {\sqrt 3 ;2} \right)\).
+) Phương trình chính tắc của Elip có dạng: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\) với \({a^2} - {b^2} = {c^2}\)
Trong đó: trục lớn \({A_1}{A_2} = 2a\); trục nhỏ \({B_1}{B_2} = 2b\); tiêu cự \({F_1}{F_2} = 2c\) ; tâm sai \(e = \dfrac{c}{a}\)
+) Gọi \(M\left( {{x_M};{y_M}} \right) \in \left( E \right) \Rightarrow M{F_1} + M{F_2} = 2a\)
+) Công thức tính diện tích tam giác: \(S = p.r\) trong đó \(S\): diện tích tam giác; p : nửa chu vi; r : bán kính đường tròn nội tiếp.
Elip \(\left( E \right):\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1 \Rightarrow {F_1}{F_2} = 2c = 2\sqrt {25 - 9} = 8\)
Gọi \(M\left( {{x_M};{y_M}} \right) \in \left( E \right) \Rightarrow M{F_1} + M{F_2} = 2a = 10 \Rightarrow p = \dfrac{{M{F_1} + M{F_2} + {F_1}{F_2}}}{2} = 9\)
Diện tích tam giác \(M{F_1}{F_2}\) là: \({S_{M{F_1}{F_2}}} = \dfrac{1}{2}{F_1}{F_2}.d\left( {M;Ox} \right) = \dfrac{1}{2}.8.{y_M} = 4\left| {{y_M}} \right| = 4{y_M}\,\,\,\left( {do\,\,{y_M} > 0} \right)\)
Lại có: \({S_{M{F_1}{F_2}}} = p.r \Leftrightarrow 4{y_M} = 9.\dfrac{4}{3} \Leftrightarrow {y_M} = 3 \in {y_M} \in \left( {\sqrt 8 ;5} \right)\)
Đáp án : C
Các bài tập cùng chuyên đề
Cho elip (E) có phương trình chính tắc là \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\). Gọi 2c là tiêu cự của (E). Trong các mệnh đề sau, mệnh đề nào đúng?
Cho elip (E) có tiêu cự là \(2c\), độ dài trục lớn và trục nhỏ lần lượt là \(2a\) và \(2b\). Trong các mệnh đề sau, mệnh đề nào đúng?
Cho elip (E) có hai tiêu điểm là \({F_1},{F_2}\) và có độ dài trục lớn là \(2a\). Trong các mệnh đề sau, mệnh đề nào đúng?
Cho elip \((E):{x^2} + 4{y^2} - 40 = 0\). Chu vi hình chữ nhật cơ sở là:
Elip (E) có độ dài trục bé bằng tiêu cự. Tâm sai của (E) là:
Cho elip \((E):\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\) và cho các mệnh đề:
1. \((E)\) có các tiêu điểm \({F_1}(0; - 4)\) và \({F_2}(0;4)\)
2. \((E)\) có tỉ số \(\dfrac{c}{a} = \dfrac{4}{5}\)
3. \((E)\) có đỉnh \({A_1}( - 5;0)\)
4. \((E)\) có độ dài trục nhỏ bằng $3.$
Tìm mệnh đề sai trong các mệnh đề trên:
Elip có độ dài trục lớn là $12,$ độ dài trục nhỏ là $8$ có phương trình chính tắc là:
Phương trình chính tắc của elip có độ dài trục lớn là $12,$ tiêu cự là $10$ là:
Phương trình chính tắc của elip có độ dài trục lớn là $20,$ tâm sai là \(e = \dfrac{3}{5}\) là:
Phương trình chính tắc của elip có tiêu cự là $6,$ tâm sai là \(e = \dfrac{3}{5}\) là
Phương trình chính tắc của elip có hai đỉnh là \(A(5;0)\) và \(B(0;3)\) là:
Cho elip chính tắc $(E)$ có tiêu điểm \({F_1}(4;0)\) và một đỉnh là \(A(5;0).\) Phương trình chính tắc của elip $(E)$ là:
Phương trình chính tắc của elip có hai tiêu điểm là \({F_1}( - 1;0),{F_2}(1;0)\) và tâm sai \(e = \dfrac{1}{5}\) là:
Phương trình chính tắc của elip có một đỉnh là \(B(0; - 2)\), tiêu cự là \(2\sqrt 5 \) là:
Phương trình chính tắc của elip có một đỉnh là \(A(0; - 4)\), tâm sai \(e = \dfrac{3}{5}\).
Phương trình chính tắc của elip có đỉnh là \(A(2;0)\) và đi qua \(M( - 1;\dfrac{{\sqrt 3 }}{2})\) là:
Phương trình chính tắc của elip có đi qua \(M(1;\dfrac{2}{{\sqrt 5 }})\), tiêu cự là $4$ là:
Phương trình chính tắc của elip có đi qua hai điểm \(M(2\sqrt 2 ;\dfrac{1}{3})\) và \(N(2;\dfrac{{\sqrt 5 }}{3})\) là:
Phương trình chính tắc của elip có diện tích hình chữ nhật cơ sở là $8$ và \(e = \dfrac{{\sqrt {12} }}{4}\) là: