Trục căn thức ở mẫu là gì? Cách trục căn thức ở mẫu - Toán 9

1. Khái niệm căn thức bậc hai

Căn thức bậc hai là biểu thức có dạng \(\sqrt A \), trong đó A là một biểu thức đại số. A được gọi là biểu thức lấy căn hoặc biểu thức dưới dấu căn.

2. Khái niệm điều kiện xác định của căn thức bậc hai

\(\sqrt A \) xác định khi A lấy giá trị không âm và ta thường viết là \(A \ge 0\). Ta nói \(A \ge 0\) là điều kiện xác định (hay điều kiện có nghĩa) của \(\sqrt A \).

3. Tính chất của căn thức bậc hai

Với A là một biểu thức, ta có:

· Với \(A \ge 0\) ta có \(\sqrt A  \ge 0\); \({\left( {\sqrt A } \right)^2} = A\);

· \(\sqrt {{A^2}}  = \left| A \right|\).

4. Khái niệm Trục căn thức ở mẫu

Trục căn thức ở mẫu là phép biến đổi để làm mất dấu căn ở dưới mẫu.

5. Cách trục căn thức ở mẫu

- Với các biểu thức A, B và B > 0, ta có \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\).

- Với các biểu thức A, B, C mà \(A \ge 0,A \ne {B^2}\), ta có:

\(\frac{C}{{\sqrt A  + B}} = \frac{{C\left( {\sqrt A  - B} \right)}}{{A - {B^2}}};\frac{C}{{\sqrt A  - B}} = \frac{{C\left( {\sqrt A  + B} \right)}}{{A - {B^2}}}\).

- Với các biểu thức A, B, C mà \(A \ge 0,B \ge 0,A \ne B\), ta có:

\(\frac{C}{{\sqrt A  + \sqrt B }} = \frac{{C\left( {\sqrt A  - \sqrt B } \right)}}{{A - B}};\frac{C}{{\sqrt A  - \sqrt B }} = \frac{{C\left( {\sqrt A  + \sqrt B } \right)}}{{A - B}}\).