Giải câu hỏi trắc nghiệm trang 24 vở thực hành Toán 8 tập 2>
Chọn phương án đúng trong mỗi câu sau:
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Chọn phương án đúng trong mỗi câu sau:
Câu 1 trang 24
Khẳng định nào sau đây là đúng:
A. \(\frac{{{{\left( {x - 1} \right)}^2}}}{{x - 2}} = \frac{{{{\left( {1 - x} \right)}^2}}}{{2 - x}}\)
B. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)
C. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - 3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)
D. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( { - x - 2} \right)}^2}}}\)
Phương pháp giải:
Ta thấy \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\) để tìm ra được đáp án đúng
Lời giải chi tiết:
Vì \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\)
=> Chọn đáp án D.
Câu 2 trang 24
Khẳng định nào sau đây là sai:
A. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\rm{x}}^2}{{\left( {x + 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( {x + 2} \right)}^2}}}\)
B. \(\frac{{ - 5}}{{ - 2}} = \frac{{10{\rm{x}}}}{{4{\rm{x}}}}\)
C. \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)
D. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\left( { - x} \right)}^2}{{\left( {x - 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( { - x + 2} \right)}^2}}}\)
Phương pháp giải:
Xem xét các đáp án tìm ra đáp án vô lí là khẳng định sai
Lời giải chi tiết:
Khẳng định C là khẳng định sai vì:
Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)
\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)
\( \Rightarrow \) vô lý.
=> Chọn đáp án C.
Câu 3 trang 24
Trong hằng đẳng thức \(\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\), Q là đa thức
A. 4x
B. \(4{{\rm{x}}^2}\)
C. 16x − 4
D. \(16{{\rm{x}}^2} - 4{\rm{x}}\)
Phương pháp giải:
Áp dụng hai phân thức bằng nhau để tìm Q.
Lời giải chi tiết:
\(\begin{array}{*{20}{l}}{\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}}\\{ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}}\\{Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}}\\{Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}}\end{array}\)
=> Chọn đáp án D.
Câu 4 trang 24
Nếu \(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{b{\rm{x}} + c}}{{xy}}\) thì b + c
A. -4
B. 8
C. 4
D. -10
Phương pháp giải:
Ta rút gọn \(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}}\) rồi tính b + c
Lời giải chi tiết:
\(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{b{\rm{x}} + c}}{{xy}}\)
Ta có:
\(\begin{array}{*{20}{l}}\begin{array}{l}\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{ - 5{\rm{x}} + 5 + 9{\rm{x}} + 7}}{{2{\rm{x}}y}}\\ = \frac{{4{\rm{x}} + 12}}{{2{\rm{x}}y}} = \frac{{4\left( {x + 3} \right)}}{{2{\rm{x}}y}} = \frac{{2(x + 3)}}{{xy}} = \frac{{2x + 6}}{{xy}}\end{array}\\{ \Rightarrow b + c = 2 + 6 = 8}\end{array}\)
=> Chọn đáp án B.
Câu 5 trang 24
Một ngân hàng huy động vốn với mức lãi suất một năm là x%. Để sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là:
A. \(\frac{{100{\rm{a}}}}{x}\) (đồng)
B. \(\frac{a}{{x + 100}}\) (đồng)
C. \(\frac{a}{{x + 1}}\) (đồng)
D. \(\frac{{100{\rm{a}}}}{{x + 100}}\) (đồng)
Phương pháp giải:
Tính số tiền người đó gửi vào ngân hàng rồi đưa ra phương án lựa chọn
Lời giải chi tiết:
Sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là: \(\frac{{100{\rm{a}}}}{x}\).
=> Chọn đáp án A.
- Giải bài 1 trang 25 vở thực hành Toán 8 tập 2
- Giải bài 2 trang 25 vở thực hành Toán 8 tập 2
- Giải bài 3 trang 26 vở thực hành Toán 8 tập 2
- Giải bài 4 trang 26 vở thực hành Toán 8 tập 2
- Giải bài 5 trang 28 vở thực hành Toán 8 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay