Giải bài 7.16 trang 22 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Một tàu thủy du lịch xuôi dòng từ bến A đến bến B mất 2 giờ và ngược dòng từ bến B về bến A hết 2,5 giờ.

Đề bài

Một tàu thủy du lịch xuôi dòng từ bến A đến bến B mất 2 giờ và ngược dòng từ bến B về bến A hết 2,5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h và vận tốc riêng của tàu thủy là không đổi.

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về các bước giải một bài toán bằng cách lập phương trình để giải bài:

Bước 1: Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình.

Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

+ Vận tốc xuôi dòng = vận tốc riêng + vận tốc dòng nước, vận tốc ngược dòng = vận tốc riêng - vận tốc dòng nước

Lời giải chi tiết

Gọi vận tốc riêng của tàu thủy là x (km/h), điều kiện: \(x > 2\)

Vận tốc xuôi dòng của tàu thủy là: \(x + 2\left( {km/h} \right)\)

Vận tốc ngược dòng của tàu thủy là: \(x - 2\left( {km/h} \right)\)

Quãng đường từ bến A đến bến B là: \(2\left( {x + 2} \right)\) (km)

Quãng đường từ bến B đến bến A là: \(2,5\left( {x - 2} \right)\) (km)

Ta có phương trình: \(2\left( {x + 2} \right) = 2,5\left( {x - 2} \right)\)

\(2x + 4 = 2,5x - 5\)

\(0,5x = 9\)

\(x = 18\) (thỏa mãn)

Vậy khoảng cách giữa hai bến A và B là: \(2\left( {18 + 2} \right) = 40\left( {km} \right)\)


Bình chọn:
3.5 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí