Giải bài 7 trang 92 sách bài tập toán 8 - Chân trời sáng tạo tập 2


Một nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ. Chọn ra ngẫu nhiên 1 bạn trong nhóm. Tính xác suất của các biến cố sau:

Đề bài

Một nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ. Chọn ra ngẫu nhiên 1 bạn trong nhóm. Tính xác suất của các biến cố sau:

A: “Tên của bạn được chọn bắt đầu bằng chữ V”;

B: “Tên của bạn được chọn gồm 4 chữ cái”;

C: “Tên của bạn được chọn chứa 2 nguyên âm”.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về xác suất của biến cố để tính: Khi tất cả các kết quả của một trò chơi hay một phép thử đều có khả năng xảy ra bằng nhau thì xác suất của biến cố A là tỉ số giữa số kết quả thuận lợi cho A và tổng số kết quả có thể xảy ra của phép thử, tức là:

 

Lưu ý: Để nhận biết các kết quả có cùng khả năng, chú ý đến các “từ khóa” liên quan đến phép thử: đồng xu, xúc xắc cân đối đồng chất; các thẻ cùng loại, cùng kích thước; quả bóng, viên bi có cùng kích thước khối lượng.

Lời giải chi tiết

Vì nhóm học sinh gồm 6 bạn có tên là Thái, Thảo, Thanh, Thuận, Vinh, Vũ nên có 6 kết quả có cùng khả năng xảy ra đối với phép thử chọn ra ngẫu nhiên 1 bạn trong nhóm.

Số các kết quả thuận lợi của biến cố A là 2. Xác suất của biến cố A là: \(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\)

Số các kết quả thuận lợi của biến cố B là 3. Xác suất của biến cố B là: \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\)

Số các kết quả thuận lợi của biến cố C là 3. Xác suất của biến cố C là: \(P\left( C \right) = \frac{3}{6} = \frac{1}{2}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí