Giải bài 5 trang 85 vở thực hành Toán 8 tập 2>
Cho $\Delta ABC\backsim \Delta MNP$. Biết rằng $6\widehat{A}=2\widehat{M}=3\widehat{C}$. Hãy tính số đo các góc của hai tam giác ABC và MNP.
Đề bài
Cho $\Delta ABC\backsim \Delta MNP$. Biết rằng $6\widehat{A}=2\widehat{M}=3\widehat{C}$. Hãy tính số đo các góc của hai tam giác ABC và MNP.
Phương pháp giải - Xem chi tiết
Dựa vào tính chất tổng ba góc của một tam giác, dãy tỉ số bằng nhau, tính chất của hai tam giác đồng dạng để tính số đo các góc của hai tam giác.
Lời giải chi tiết
Do $\Delta ABC\backsim \Delta MNP$ nên $\widehat{M}=\widehat{A},\widehat{N}=\widehat{B},\widehat{P}=\widehat{C}$. Như vậy $6\widehat{A}=2\widehat{B}=3\widehat{C}$.
Suy ra: $\frac{\widehat{A}}{1}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{6}={{30}^{o}}$.
Do vậy $\widehat{M}=\widehat{A}={{30}^{o}},\widehat{N}=\widehat{B}={{90}^{o}},\widehat{P}=\widehat{C}={{60}^{0}}$.
- Giải bài 6 trang 85 vở thực hành Toán 8 tập 2
- Giải bài 4 trang 84 vở thực hành Toán 8 tập 2
- Giải bài 3 trang 84 vở thực hành Toán 8 tập 2
- Giải bài 2 trang 84 vở thực hành Toán 8 tập 2
- Giải bài 1 trang 84 vở thực hành Toán 8 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay