Giải bài 5 trang 12 Chuyên đề học tập Toán 12 - Cánh diều>
Học sinh khối 12 của một trường trung học phổ thông được chia thành các nhóm học tập. Chọn ngẫu nhiên một nhóm trong số các nhóm học tập đó. Gọi X là số học sinh trong nhóm được chọn ra. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là: Tính kì vọng, phương sai và độ lệch chuẩn của X.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Học sinh khối 12 của một trường trung học phổ thông được chia thành các nhóm học tập. Chọn ngẫu nhiên một nhóm trong số các nhóm học tập đó. Gọi X là số học sinh trong nhóm được chọn ra. Biết rằng bảng phân bố xác suất của biến ngẫu nhiên rời rạc X là:
Tính kì vọng, phương sai và độ lệch chuẩn của X.
Phương pháp giải - Xem chi tiết
Áp dụng các công thức sau
a) Kì vọng: \(E(X) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\)
b) Phương sai: \(V(X) = {({x_1} - \mu )^2}{p_1} + {({x_2} - \mu )^2}{p_2} + ... + {({x_n} - \mu )^2}{p_n}\)
c) Độ lệch chuẩn: \(\sigma (X) = \sqrt {V(X)} \)
Lời giải chi tiết
\(\begin{array}{l}E(X) = 1.0,15 + 2.0,2 + 3.0,3 + 4.0,2 + 5.0,1 + 6.0,05 = 3,05\\V(X) = {(1 - 3,05)^2}.0,15 + {(2 - 3,05)^2}.0,2 + {(3 - 3,05)^2}.0,3 + {(4 - 3,05)^2}.0,2 + {(5 - 3,05)^2}.0,1 + {(6 - 3,05)^2}.0,05\\V(X) = 1,8475\\\sigma (X) = \sqrt {V(X)} = \sqrt {1,8475} \approx 1,36\end{array}\)
- Giải bài 6 trang 12 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 7 trang 12 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 8 trang 12 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 4 trang 11 Chuyên đề học tập Toán 12 - Cánh diều
- Giải bài 3 trang 11 Chuyên đề học tập Toán 12 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục