 Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT
                                                
                            Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT
                         Bài 4. Phép nhân đa thức trang 16,17,18 Vở thực hành To..
                                                        Bài 4. Phép nhân đa thức trang 16,17,18 Vở thực hành To..
                                                    Giải bài 4 trang 18 vở thực hành Toán 8>
Làm tính nhân:
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Làm tính nhân:
a) \(\left( {{x^2}\;-xy + 1} \right)\left( {xy + 3} \right)\).
b) \(\left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc nhân hai đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Lời giải chi tiết
a)
\(\begin{array}{*{20}{l}}{\left( {{x^2}\;-xy + 1} \right)\left( {xy + 3} \right)}\\{ = \left( {{x^2}\;-xy + 1} \right).xy + \left( {{x^2}\;-xy + 1} \right).3}\\{ = {x^3}y-{x^2}{y^2}\; + xy + 3{x^2}\;-3xy + 3}\\{ = {x^3}y-{x^2}{y^2}\; + \left( {xy-3xy} \right) + 3{x^2}\; + 3}\\{ = {x^3}y-{x^2}{y^2}\;-2xy + 3{x^2}\; + 3.}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\\ = \left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right).x - \left( {{x^2}{y^2} - \frac{1}{2}xy + 2} \right).2y\\ = {x^2}{y^2}.x - \frac{1}{2}xy.x + 2x - {x^2}{y^2}.2y + \frac{1}{2}xy.2y - 2.2y\\ = {x^3}{y^2} - \frac{1}{2}{x^2}y + 2x - 2{x^2}{y^3} + x{y^2} - 4y.\end{array}\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 5 trang 18 vở thực hành Toán 8
- Giải bài 6 trang 18 vở thực hành Toán 8
- Giải bài 7 trang 18 vở thực hành Toán 8
- Giải bài 3 trang 17 vở thực hành Toán 8
- Giải bài 2 trang 17 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            