Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {3x + 1} - 2x}}{{x - 1}}\,\,khi\,\,x \ne 1\\ - \dfrac{5}{4}\,\,\,\,khi\,x = 1\end{array} \right.\). Tính \(f'\left( 1 \right)\).
- A \(0\)
- B \( - \dfrac{7}{{50}}\)
- C \( - \dfrac{9}{{64}}\)
- D không tồn tại
Phương pháp giải:
+) Kiểm tra tính liên tục của hàm số tại \(x = 1\).
+) Nếu hàm số liên tục tại \(x = 1\), sử dụng công thức tính đạo hàm bằng định nghĩa: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Trước hết ta xét tính liên tục của hàm số tại \(x = 1\).
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {3x + 1} - 2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt {3x + 1} - 2x} \right)\left( {\sqrt {3x + 1} + 2x} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2x} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 1 - 4{x^2}}}{{\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2x} \right)}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - \left( {x - 1} \right)\left( {4x + 1} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {3x + 1} + 2x} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - 4x - 1}}{{\sqrt {3x + 1} + 2x}} = \dfrac{{ - 4 - 1}}{{\sqrt 4 + 2}} = \dfrac{{ - 5}}{4} = f\left( 1 \right)\end{array}\)
\( \Rightarrow \) Hàm số liên tục tại \(x = 1\).
Tính \(f'\left( 1 \right)\).
\(\begin{array}{l} \Rightarrow f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \dfrac{{\dfrac{{\sqrt {3x + 1} - 2x}}{{x - 1}} + \dfrac{5}{4}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{4\sqrt {3x + 1} - 8x + 5x - 5}}{{4{{\left( {x - 1} \right)}^2}}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{4\sqrt {3x + 1} - 3x - 5}}{{4{{\left( {x - 1} \right)}^2}}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {4\sqrt {3x + 1} - 3x - 5} \right)\left( {4\sqrt {3x + 1} + 3x + 5} \right)}}{{4{{\left( {x - 1} \right)}^2}\left( {4\sqrt {3x + 1} + 3x + 5} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{16\left( {3x + 1} \right) - \left( {9{x^2} + 30x + 25} \right)}}{{4{{\left( {x - 1} \right)}^2}\left( {4\sqrt {3x + 1} + 3x + 5} \right)}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - 9{x^2} + 18x - 9}}{{4{{\left( {x - 1} \right)}^2}\left( {4\sqrt {3x + 1} + 3x + 5} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - 9{{\left( {x - 1} \right)}^2}}}{{4{{\left( {x - 1} \right)}^2}\left( {4\sqrt {3x + 1} + 3x + 5} \right)}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{ - 9}}{{4\left( {4\sqrt {3x + 1} + 3x + 5} \right)}} = \dfrac{{ - 9}}{{64}}\end{array}\)
Chọn C.