Câu hỏi
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) là
- A 1
- B 4
- C 2
- D 3
Phương pháp giải:
Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) bằng số giao điểm có hoành độ dương của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - \dfrac{7}{2}\).
Lời giải chi tiết:
Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) bằng số giao điểm có hoành độ dương của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - \dfrac{7}{2}\) và bằng 2.
Chọn: C