Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) là

  • A 1
  • B 4
  • C 2
  • D 3

Phương pháp giải:

Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) bằng số giao điểm có hoành độ dương của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y =  - \dfrac{7}{2}\).

Lời giải chi tiết:

Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) bằng số giao điểm có hoành độ dương của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y =  - \dfrac{7}{2}\) và bằng 2.

Chọn: C


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay