Câu hỏi

Hệ số của số hạng chứa \({x^4}\) trong khai triển \({\left( {\dfrac{x}{3} - \dfrac{3}{x}} \right)^{12}},\,\,\left( {x \ne 0} \right)\)?

  • A \(924\).                                    
  • B \(\dfrac{1}{{81}}\).                
  • C \(40095\).                                
  • D \(\dfrac{{55}}{9}\).

Phương pháp giải:

Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \) .

Lời giải chi tiết:

Ta có: \({\left( {\dfrac{x}{3} - \dfrac{3}{x}} \right)^{12}} = {\left( {\dfrac{1}{3}x - 3{x^{ - 1}}} \right)^{12}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( {\dfrac{1}{3}x} \right)}^{12 - i}}{{\left( { - 3{x^{ - 1}}} \right)}^i}}  = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( { - 1} \right)}^i}{3^{2i - 12}}{x^{12 - 2i}}} \)

Hệ số của số hạng chứa \({x^4}\) trong khai triển ứng với i thỏa mãn\(12 - 2i = 4 \Leftrightarrow i = 4\).

Hệ số đó bằng: \(C_{12}^4{\left( { - 1} \right)^4}{3^{ - 4}} = \dfrac{{55}}{9}\).

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay