Câu hỏi
Giới hạn\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt {{x^2} + 1} } \right)\) bằng?
- A \(\frac{1}{2}\)
- B \(\frac{1}{4}\)
- C \( + \infty \)
- D \( - \infty \)
Phương pháp giải:
Nhân liên hợp, với \(x > 0\) thì ta có:
\(\begin{array}{l}\sqrt {{x^2} + x} - \sqrt {{x^2} + 1} = \frac{{\left( {\sqrt {{x^2} + x} - \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} } \right)}}{{\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} }}\\ = \frac{{x - 1}}{{\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} }} = \frac{{1 - \frac{1}{x}}}{{\sqrt {1 + \frac{1}{x}} + \sqrt {1 + \frac{1}{{{x^2}}}} }}\end{array}\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt {{x^2} + 1} } \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} + x} - \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} } \right)}}{{\left( {\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{\left( {\sqrt {{x^2} + x} + \sqrt {{x^2} + 1} } \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{\sqrt {1 + \frac{1}{x}} + \sqrt {1 + \frac{1}{{{x^2}}}} }} = \frac{1}{2}\end{array}\)
Chọn A.