Câu hỏi

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?

  • A 2020.
  • B 4038
  • C 2018.
  • D 2019.

Phương pháp giải:

Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) =  - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) =  - \infty \,\)thì \(x = a\)  là TCĐ của đồ thị hàm số.

Lời giải chi tiết:

Đồ thị hàm số có hai tiệm cận đứng \( \Rightarrow 4{x^2} - 2x + m = 0\) (1) có hai nghiệm phân biệt

+) \(x =  - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow 4.{\left( { - \dfrac{1}{2}} \right)^2} - 2.\left( { - \dfrac{1}{2}} \right) + m = 0 \Leftrightarrow m =  - 2\)

Khi đó, \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }}\) (TXĐ: \(D = \left( { - \dfrac{1}{2};1} \right)\))

\(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {\left( {x - 1} \right)\left( {2x + 1} \right)} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \sqrt {\dfrac{{2x + 1}}{{x - 1}}}  = 0\)

\( \Rightarrow x =  - \dfrac{1}{2}\)  không phải TCĐ của đồ thị hàm số đã cho \( \Rightarrow \) Đồ thị hàm số có ít hơn 2 đường tiệm cận đứng \( \Rightarrow m =  - 2\): Loại

+) \(x =  - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow m \ne  - 2\)

Khi đó, để có hai tiệm cận đứng thì (1) có 2 nghiệm phân biệt\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 4m > 0 \Leftrightarrow m < \dfrac{1}{4} \Rightarrow \left\{ \begin{array}{l}m < \dfrac{1}{4}\\m \ne  - 2\end{array} \right.\)

Mà \(m \in \mathbb{Z},\,\,m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left\{ { - 2019; - 2018;...;0} \right\}\backslash \left\{ { - 2} \right\}\): Có 2019 số m thỏa mãn.

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay